

Protecting Mobile Agents against Malicious Host Attacks

Using Threat Diagnostic AND/OR Tree

Magdy Saeb1, Meer Hamza1, Ashraf Soliman2

1. Arab Academy for Science, Technology & Maritime Transport
Computer Engineering Department

2. Alexandria Stock Exchange,
Technology & Information Systems Department

Alexandria, Egypt

Abstract
Threat diagnostic, using AND/OR tree (TDT) and risk
analysis, is a mechanism to protect mobile agents against
malicious host attacks. The method is based on analyzing the
probable causes of mobile agent failure to perform its intended
function. It uses the symptoms of different types of malicious
host attacks and arranges them in a logical order depending on
the expected outcomes. We provide a methodical definition of
attacks against mobile agents. This approach allows defining a
proposed protection scheme that is used to protect mobile
agents. The objectives of this paper are twofold: Firstly,,
identify the different types of malicious hosts attacks based on
their symptoms. Secondly we introduce our approach based on
criticality analysis to identify the most critical type of attack
and its associated expected failure cost.
Keywords: mobile agents, agent security, malicious host,
threat diagnostic tree, and smart object class.

1. Introduction
Mobile agents are program instances that are able to migrate
from one agent platform to another, thus fulfilling tasks on
behalf of user or another entity. They consist of three parts:
code, a data state (e.g. instance variables), and an execution
state that allows them to continue their program on the next
platform [1]. Mobile agent systems are intended to be use as a
base for real-world applications. They transport sensitive
information such as secret keys, electronic money, and other
private data. Therefore security is a fundamental precondition
for the acceptance of mobile agent applications. In other
words, we need to have a program that actively protects itself
against execution environment that possibly may divert the
intended execution towards a malicious goal [2]. Many
approaches aim at protecting mobile agents. There are some
problems, which have to be solved before these approaches
can be used [1,3,4]. Mobile agents using our proposed
mechanism can be considered as a smart object class SOC. In
the following sections we introduce our proposed mechanism
to protect mobile agent against malicious host attacks.

2. The Predicament of malicious hosts
A malicious host can be defined in a general way as a party
that is able to execute an agent that belongs to anther party and
that it tries to attack that agent in some way. For example: A
Mobile Travel Agent is sent out by a user to visit several
airlines, find the best offer and book and pay the best flight
[2]. A malicious host might spy out the price limits set by the
user and the offers by competitors. It might tamper the agent
to make the agent falsely believe that the host has the best

offer. It might steal the mobile agent’s electronic money,
credit card number or cryptographic keys.

3. Threat diagnostic and/or tree (TDT)
One analytical threat derivation technique that has been
designed to assist engineers during the security requirements
analysis phase of computer system development is known as
the threat tree approach [5]. Threat diagnostic tree approach
has its origins in the use of threat trees in the mobile agent
system reliability engineering, where the goal is to prevent
mobile agent failures due to malicious host attacks. Our
mechanism in identifying that a threat or an attack to a mobile
agent has taken place is to use a threat tree analysis approach.
We try to determine some symptoms for every attack class.
We developed a threat tree using a relationship between the
attacks and symptoms of these attacks based on the logical
AND/OR relation in which attack can occur only if one the
symptoms could occur. Then we can identify the attack type
based on the symptoms it produces. This approach is shown in
the following sections:

3.1. Protecting mobile agents from malicious hosts

A mobile agent traverses the network with its code and data
vulnerable to various types of security threats. Attacks against
mobile agents are classified as active and passive attacks [6].
In a passive attack, the attacker does not interfere with the
mobile agent, but only attempts to extract useful information
from it. In active attacks, the attacker can arbitrarily intercept
and modify code and data of the mobile agent. In the table
shown below (table 1), we attempt to collect the malicious
host known attacks, attack symptoms and the probability of
each symptom.

Table 1: Summary of possible malicious host attacks and their
symptoms

Malicious host
attacks

Symptoms & Probability

Spying out code Long execution time P1
Temporary storage P2
Open source code P3

Spying out data Open source code P3
Long time before visit next host P4

Spying out control
flow

Deterioration in performance P5
Alter agent P6
Determine next execution step P7
Watching the control flow P8

Manipulation of
code

Temporary storage P2
Break code P9
Update or change code, state P10

Change behavior of agent P11
Manipulation of
data

Temporary storage P2
Damaged or modification of data P12

Manipulation of
control flow

Open source code P3
Break code P9
Update or change code, state P10

Incorrect
execution of code

Long execution time P1
Open source code P2
Determine next execution step P7

Masquerading of
the host

Temporary storage P2
Open source code P3

Denial of
execution

Watching the control flow P8
Non-executable or delay execution P13

Spying out
interaction with
other agents

Change behavior of agent P11
Wrong results P14

Manipulation of
interaction with
other agents

Open source code P3
Break code P9

Returning wrong
results of system
calls issued by the
agent

Watching the control flow P8
Wrong results P14

Our objective in this work is to allow an agent to execute
security-sensitive computations even in an untrusted execution
environment. However, if this objective is not met due to the
nature of an attack, then the agent will self-destruct.

Figure 1: symptoms for every malicious hosts attack classes

Overall attacks probability P by malicious hosts

)(*)(*)(

)())()(

)()((*))(

)()(*)((1

14813832

731931093

1221110921411

876543321

pppppp

pppppppp

pppppppp

pppppppppP −=

4. Measurements and risk analysis
In this section, we use two phases; the first one is the
qualitative step of identifying, characterizing, and ranking
hazards. The second phase is a quantitative step of risk
evaluation, which includes estimating the likelihood (e.g.
frequencies) and consequences of a certain hazard occurrence.
This phase depends greatly on the reliability calculation of the
system components, and the criticality of its constituents. [7].

4.1. Quantitative analysis

There are two major parts: Determination of the likelihood,
(e.g., prob. of symptoms Pi), of an undesirable event Ei.
Evaluation of the consequence, Ci of this hazardous event and
the choice of the type of consequence may affect the
acceptability threshold and the tolerance level for the risk. The
actual expected risk value RSK is given by:

RSK = Σ Pi Ci . ∀ i = 1, 2,..n

4.2. Criticality analysis

Criticality analysis [8] is based on normalized sensitivity
analysis of the reliability expression found from the AND/OR
tree. To clarify some of the terms used in kind of analysis, we
discuss the following set of equations:
The overall reliability R = 1 – Probable attacks on agents by
malicious hosts, i.e., R = 1-Q
Where, R = f (pi, qi) and pi , qi are the reliability and the
unreliability both of them assume real values on the closed
interval (0,1). Reliability function R is given by:

)](*)(*)(

)())()(

)()((*))(

)()(*)((1[1

14813832

731931093

1221110921411

876543321

pppppp

pppppppp

pppppppp

pppppppppR −−=

Components’ reliabilities are allowed to take values between 0
and 1. The criticality measure of event j is given by [8]:

R
p/

p
RICR j

j
j

∂
∂

=

To compute the partial derivative, we use probability of
boundary condition, where

}0p|R{}1p|R{
p
R

jj
j

=−==
∂
∂ ,

as shown in reference [8].

4.3. Ranking of critical malcious host attacks

Preliminary experiments were carried out with a java code to
create a 1000 random malicious host generator (RMH). The
RMH provided six malicious host attack classes with fourteen
malicious host attack symptoms. This data along with the
probable attacks and reliability of mobile agents are shown in
the table given below.

Table 2: The Probability of malicious hosts attack cases

 Malicious host attack
cases

Q (Probable
Attack)

R
(Reliability)

1 Spaying 0.538 0.462

 Long execution
time P1

Temporary
storage P2

Open source code
P3

Long time before
visit next host P4

Deterioration in
 performance P5

Alter agent P6

Determine next
execution step P7

Watching the
control flow P8

Breaking code P9

Damaged or
modification of

data P12

Non-executable
P13

Wrong results P14

Update or change
code, state P10

Incorrect execution
of code case P1 P3 P7

Masquerading of
the host case P2 P3

Denial of execution
case P8 P13

Returning wrong
results of system calls

issued by the agent
case P8 P14

Change behavior
of agent P11

Manipulation
case

Spying out case

Overall
 Attacks Probabilit
By Malicious Hosts))(

*)(

*)(

*)((1

1411

8765

43

321

pp

pppp

pp

ppp−

)(

*)(

*)(

*)(

*))(

)(

*)(

((

*))(

)(

*)(

((1

148

138

32

731

93

1093

122

11092

1411

8765

43

1

pp

pp

pp

ppp

pp

ppp

pp

pppp

pp

pppp

pp

ppP −=

))(

*)(

*)(

*)((1

93

1093

122

111092

pp

ppp

pp

pppp−

2 Manipulation 0.451 0.549
3 Masquerading 0.121 0.879
4 Denial of Execution 0.264 0.736
5 Incorrect execution of

code
0.270 0.730

6 Wrong Results 0.263 0.737

In this case the criticality measure of event

R
pICR j

jj *IST=

 where IST = Index of Structural Importance

Using the last equation we calculate the index of criticality
malicious host attack cases. The following table (table 3)
shows the ranking of criticality.

Table 3: Ranking of the critical malicious host attacks cases�

Figure 2: Ranking of the critical malicious host attack cases�

5. Summary and Conclusion
Security is critical when executable code is transferred across
a network. Agents themselves need protection against hostile
hosts that would look for opening their code or modifying
them. In this respect, we have provided the following:

• A survey of various known malicious host
attacks on mobile agents,

• A detailed quantitative analysis of the
given known attacks and their symptoms

using an AND/OR threat diagnostic tree
structure,

• Assigning probabilities of these attacks,
we were able to compute an expression for
the overall probability of adequate
behavior of a mobile agent in a hostile
environment of malicious hosts,

• To avoid the difficulty of estimating the
actual values of the attack probability, we
resorted to criticality analysis based on
probability of boundary conditions. This
type of analysis is analogous to
normalized sensitivity analysis.

• While we realize that the estimation of the
model parameter is not a trivial task to
achieve, yet we believe the methodology
discussed is a good quantitative starting
point to protect agents against host attacks.

Mobile agents using our proposed mechanism can be
considered as a smart object class SOC. The question that
remains open to discussion is where to put this mobile agent
protective measure? At this stage, we recommend to add this
analysis code as part of the operating system. The advantage
of this approach is the dynamic monitoring and estimation of
various probabilities of attacks. However, the main
disadvantage is that is can be circumvented by advanced
malicious attackers. The other alternative is to have such
protective measures added to the mobile agent code itself. In
this case, the agent will self-destruct when an attack has taken
place. The overhead encountered with this alternative
approach is the main problem of applying it in all types of
mobile agents. Future work, using both approaches, will shed
some light on the required optimal course of action.

6. References
[1] Fritz Hohl, “A framework to protect mobile agent by using
reference states”, University of Stuttgart, Germany, March,
2000.
[2] Toms Sander and Christian F. Tschudin, “Protecting
Mobile Agent Against Malicious Hosts”, International
Computer Science Institute 1947 Center Street, Berkeley, CA
94704, USA. Sander , tschudin@icsi.berkeley.edu. Springer-
Verlag, pp. 92-97, 1998.
[3] Fritz Hoh1, “Time Limited Blackbox Security: Protecting
Mobile Agents from Malicious Hosts”, Institute of Parallel
and Distributed High-performance System (IPVR), University
of Stuttgart, Germany, Fritz.Hoh1@informatik.uni-stuttgart.de
Springer-Verlag pp. 44-46, 1998.
[4] General Magic, The Typescript Reference Manual,
http://www.genmagic.com/telescript/
documentation/TRM/,1996.
[5] Edward G. Amoroso, Fundamentals of Computer Security
Technology, Prentice-Hall International, Inc., 1994.
[6] Warwick Ford, “computer communications security –
principles, standard protocols and techniques”, Prentice Hall,
1994.
[7] Mohamed Modarres, Mark Kaminskiy, Vasiliy Krivstov,
Reliability Engineering and Risk Analysis, Marcel Dekker,
Inc.,1999.
[8] M. Saeb, R. Schinzinger, D. Nyrienda, “ On Measures of
Network Reliability and Critical Components”, IEEE.
Asilomar Conference on Circuits, Systems, and Computers,
Asilomar, California, 1987.

Important measures Simulation results
Components of
malicious host

attacks

Malicious host
attack cases

IST
value

ICR
value

IST
Rank

ISR
Rank

1 Spying 0.538 1.16 1 1
2 Manipulation 0.451 0.51 2 2
3 Masquerading 0.121 0.13 6 6
4 Denial of

Execution
0.264

0.35
4 4

5 Incorrect
execution of

code

0.270 0.36 3 3

6 Wrong Results 0.263 0.35 5 4

0

0.2

0.4

0.6

0.8

1

1.2

ICR

Spying

Manipulation

Masquerading

Denial of
execution

Incorrect
execution of
code
Wrong results

