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Abstract: The Metamorphic-Enhanced Twofish Cipher is a metamorphic cipher that uses a variable word size and variable-size user’s key. 

The cipher merged two ciphers by defining a new function using four bit-balanced operations. These operations are: XOR, INV, ROR, NOP 

for bitwise xor, invert, rotate right and no operation respectively. The new function replaces the h-function, previously used in the Twofish 

Cipher, and thus creating a Meta h-function. The aim of this alteration is to provide an improvement to the Twofish cipher that introduces 

high confusion into the enhanced Twofish without disturbing its linear and differential diffusion criteria. In this work, we discuss the 

Metamorphic-Enhanced Twofish Cipher and provide a Field Programmable Gate Array (FPGA) hardware implementation of the enhanced 

algorithm. 
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1. Introduction 

The Metamorphic-Enhanced Twofish Cipher is a 

metamorphic cipher that improves the Twofish Cipher. In 

other words, the Metamorphic-Enhanced Twofish Cipher is a 

tied combination between a Stone Metamorphic Cipher [1], 

[2] and The Twofish Block Cipher [3], [4], [5]. It has four 

low-level operations that are all bit-balanced to encrypt the 

plaintext bit stream. These bit-balanced operations are: 

XORing a key bit with a plaintext bit (XOR), inverting a 

plaintext bit (INV), exchanging one plaintext bit with 

another one in a given plaintext word using a right rotation 

operation (ROR), and producing the plaintext without any 

change (NOP). The sub-keys of The Metamorphic-Enhanced 

Twofish Cipher are generated using a combination of the 

Meta-Twofish encryption function itself (Meta-Twofish 

Algorithm) and a one-way hash function where the generated 

sub-keys stream is used to select the various operations. 

Moreover, the Meta-Twofish encryption function inherits the 

structure of the Twofish block cipher and uses the four bit-

balanced operations in the h function of the Twofish to 

define the function Meta-h.  This Meta-h is the heart of 

Meta-Twofish algorithm and is responsible for key 

expansion of the algorithm. The aim of this alteration is to 

provide an improvement to the Twofish cipher that 

introduces high confusion into the enhanced Twofish without 

disturbing its linear and differential diffusion criteria. In the 

following sections, we provide the structure of the 

Metamorphic-Enhanced Twofish Cipher, the structure of 

Meta-Twofish encryption function by defining the new 

function called Meta-h function, Moreover, we provide the 

details of a proposed hardware implementation for the 

function Meta-h, a discussion of the results of the FPGA 

implementation and finally a summary and our conclusions. 

2. The Metamorphic Twofish Structure 

The Metamorphic Twofish structure has the structure of the 

stone metamorphic cipher. Figure 1 shows the block diagram 

of the cipher. The Metamorphic-Enhanced Twofish Cipher is 

constructed of two basic functions; the Meta-Twofish 

encryption function and the sub-key generating one-way 

hash function. The pseudo random number generator is built 

using the same encryption function and the MDP-384 [6], [7] 

one-way hash function. Two large numbers (a, b) are used to 

iteratively generate the sub-keys. The details of the 

substitution box S-orb can be found in [8]. 

 

 

 

Figure 1: The structure of Metamorphic Twofish Cipher 
 

The user key is first encrypted then the encrypted key is used 

to generate the sub-keys. The Meta-Twofish encryption 
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function is built using the four low-level operations in 

Twofish encryption cipher. All operations are at the bit level 

composing the basic Crypto Logic Unit (CLU). More details 

of CLU can be found in [1] where the operation selection 

bits can be chosen from any two sub-key consecutive bits 

and Table1 demonstrates the details of each one of these 

operations.  

 

 

Table 1: CLU operations 

 

Mnemonic Operation Select Operation code 

XOR Ci = Ki   Pi “00” 

INV Ci =  (Pi) “01” 

ROR Pi ← (Pi ,m) “10” 

NOP Ci = Pi “11” 

 

3. The Meta-Twofish Encryption Function 

The Meta-Twofish encryption function uses the same 

structure of Twofish algorithm merging with the crypto logic 

unit in functions h in F-function.  This configuration is used 

to generate expanded key words. The operation selection bits 

and the rotation selection bits are chosen from the sub-key 

bits. Figure 2 shows an overview the Meta-Twofish 

encryption function structure. 

 

 

 

Figure 2:  Meta-Twofish encryption function 

 

The formal description of Meta-Twofish algorithm has the 

formal description of Twofish block cipher expect the 

function h which be modified to Meta-h function.  

3.1 The Function Meta-h 

The function Meta-h is a function that takes four inputs 

 32-bit word X 

 List               of 32-bit words of length k 

 2-bit operation selection bits 

 3-bit rotation selection bits 

and returns one 32-bit word of output where also this 

function works in k stages. In each stage, the four bytes are 

each passed through a fixed S-box then the basic crypto logic 

unit (CLU) which is applied one of functions XOR, INV, 

NOP, or ROR with a byte derived from the list L. The 

operation selection bits determine the applied function in 

CLU, while the 3-bit rotation selection bits determine the 

number of rotations which be provided for byte when ROR 

function is used. Finally, the bytes are once again passed 

through a fixed S-box, and the four bytes are multiplied by 

the MDS matrix. Figure 3 shows an overview of the function 

Meta-h for k=2 stage. 

 

 
 

Figure 3: The function Meta-h for k=2 stages 

 

Formally: The word X is splitting into bytes. 

         
            

                    

for           and        . Then the sequence of 

substitutions and CLUs is applied. 

                           

 

If operation selection bits = “00” 

  If     then  
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In all cases  

                                        

                                           

                                         

                                      
 

If operation selection bits = “01”  

If     then  

                      

                       

                      

                      

  If     then  
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In all cases  

                               

                                     

                                

                             
 

If operation selection bits = “10”  

If     then  

                             

                              

                             

                             

  If     then  

                             

                             

                             

                              
In all cases  

                                           

                                           

                                           

                                           
If operation selection bits = “11” 

If     then  

                      

                       

                      

                      

  If     then  

                      

                      

                      

                       
In all cases  

                               

                                      

                                

                             
where q0 and q1 are fixed permutation on 8-bit values, and m 

represents the integer number of “rotation selection bits”. 

The resulting vector of  ’s is multiplied by the MDS matrix  

 

 

  
  
  
  

   

        
        
  
  

  
  

  
  

  
  

   

  
  
  
  

  

 

        
  

 

   

 

 

Where: Z is the result of Meta-h.  

 

4. The Algorithm  

In this section, we provide the formal description of the 

Metamorphic Twofish block cipher algorithm as follows: 

 

 

 

Algorithm: METAMORPHIC TWOFISH  

                            BLOCK CIPHER 

INPUT: Plain text message P, User Key K,  

               Block Size B 

OUTPUT: Cipher Text C 

Algorithm body: 

Begin 

Begin key schedule 

1. Read user key; 

2. Encrypt user key by calling Meta-Twofish encryption 

function and using the initial agreed-upon values as the 

random input to this function; 

3. Read the values of the large numbers a and b from the 

encrypted key; 

4. Generate a sub-key by calling the hash one-way function; 

5. Store the generated value of the sub-key; 

6. Repeat steps 5 and 6 to generate the required number of 

sub-keys; 

End key schedule; 

 

Begin Encryption 

7. Read a block B of the message P into the message cache; 

8. Use the next generated 128-bit key from the 384-bit key to 

bit-wise encrypt the plain text bits by calling the Meta-

Twofish encryption function; 

9. If message cache is not empty, Goto step 8;  

10. Else if message cache is empty: 

       If message not finished 

      10.1 Load next block into message cache; 

      10.2 Goto 8; 

    Else if message is finished then halt; 

End Encryption; 

End Algorithm. 

 

Function Meta-Twofish Encryption 

Begin 

1. Read next message bit; 

2. Read next key bit from sub-key; 

3. Read selection bits from sub-key; 

4. Read rotation selection bits from sub-key; 

5. Use selection & rotation bits to select and perform 

operation: XOR, INV, ROR, NOP in Meta-h functions in 

Meta-Twofish Algorithm; 

6. Perform the encryption operation using plaintext bit and 

sub-key bit to get a cipher bit; 

7. Store the resulting cipher bit; 

End; 

 

5. FPGA Implementation  

The function Meta-h is applied to the F-function in various 

rounds of Meta-Twofish encryption function that leads to the 

FPGA-based implementation. We have implemented the 

function Meta-h applying the VHDL hardware description 

language [9], [10], [11] and utilizing Altera design 

environment Quartus II 9.1 Service Pack 2 Web Edition [12]. 
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The function Meta-h circuit has 32-bit input which is 

splitting into four bytes, 32-bit Li words, 2-bit operation-

selection bits, and 3-bit rotation-selection bits. Thus, it 

produces a 32-bit output. Each byte of input is run through 

its own S-box and applying the metamorphic operations 

through crypto logic unit (CLU) with byte derived from the L 

list. The design was implemented using an EP2C70F896C6, 

Cyclone II family device. The schematic diagram for Meta-h 

function is shown in Figure 4. A series of screen-captures of 

the different design environment output are shown in Figures 

5 to 12. Figures 5, 6, 7, 8, and 9 provide the indication of a 

successful compilation and parts of RTL for Meta-h function 

respectively. Figure 10 shows the technology map viewer of 

Meta-h function. Figure 11 demonstrates the floor plan. 

Figure 12 displays the simulator screen showing the output 

of Meta-h function for all operation selection states and 

rotation-selection bits equal to 101". The details of the 

analysis and synthesis report are shown in appendix A. The 

details of timing comparison between Meta-h function and h 

function is shown in appendix B. 

 

 

 

Figure 4: Schematic diagram of Meta-h function 

 

 

Figure 5: Compiler tool screen showing correct 

implementation 

 

 

 

Figure 6: RTL screen for part of Meta-h function 

 

 

Figure 7: RTL screen for part of Meta-h function 

 

 

 

 

Figure 8: RTL screen for part of Meta-h function      
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Figure 9: RTL screen for part of Meta-h function 

 

 

 

 

 

 

Figure 10: Technology Map Viewer of Meta-h function 

 

 

 

 

 

Figure 11: Floor-plan of Meta-h function 

 

 

 

 

Figure 12: Simulator screen showing the output of Meta-h 

function for all operation selection states and rotation-

selection bits ="101" 

 

6. Summary and Conclusions  

We have furnished a cipher that combines a metamorphic 

cipher and the well-known Twofish block cipher. Moreover, 

the modified Twofish algorithm, called Metamorphic-

Enhanced Twofish Block Cipher, uses four bit-balanced 

operations in the core of the algorithm. This is the Meta-h 

function. This alteration provides an improvement to the 

Twofish Cipher by introducing high confusion into the 

enhanced Twofish without disturbing its linear and 

differential diffusion criteria.  In addition, we have presented 

a hardware implementation of the function Meta-h by 

applying VHDL using the schematic editor, and the resulting 

circuit provides a proof-of-concept FPGA implementation. 

Balanced, area, and speed optimization techniques were 

performed and it was shown that the worst case pin-to-pin 

delay is equal to 37.131 ns in the case of balanced 

optimization, 39.831 ns in the case of area optimization and 

39.055 ns in speed optimization. Speed optimization technique 

provides maximum Fan-Out although consumes worst case pin-

to-pin delay, and area optimization provides minimum 

consuming of total logic elements. While the Meta-h function 

consumes more time as compared to by the h function, still the 

Metamorphic-Enhanced Twofish algorithm will appreciably 

increase the entropy and provide higher degree of randomness 

and conjectural security.  
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Appendix A: The analysis & synthesis and   

                             Fitter report details 
 

Analysis & Synthesis Summary 

Family: Cyclone II 

Device: EP2C70F896C6 

Total logic elements: 801 out of 68,416 (1 %) 

                                 -- Combinational with no register: 801      

                                 -- Register only: 0          

                                 -- Combinational with a register: 0 

Total combinational functions: 801 

           Logic element usage by number of LUT inputs 

       -- 4 input functions: 554 

      -- 3 input functions: 112 

      -- <=2 input functions: 135 

           -- Register only: 0 

Total pins: 133 out of 622 (21 %) 

Total memory bits: 0 out of 1,152,000 (0 %) 

Embedded Multiplier 9-bit elements: 0 out of 300 (0 %) 

Total PLLs: 0 out of 4 (0 %) 

Optimization Technique: Balanced 

Maximum fan-out: 124 

Total fan-out: 2854 

Average fan-out: 3.05 

 

Fitter Summary 

Block interconnects: 905 out of 197,592 (< 1 %) 

C16 interconnects: 105 out of 6,270 (2 %) 

C4 interconnects: 455 out of 123,120 (< 1 %) 

Direct links: 181 out of 197,592 (< 1 %) 

Global clocks: 0 out of 16 (0 %) 

Local interconnects: 384 out of 68,416 (< 1 %) 

R24 interconnects: 110 out of 5,926 (2 %) 

R4 interconnects: 511 out of 167,484 (< 1 %) 

Nominal Core Voltage: 1.20 V 

Low Junction Temperature: 0 °C 

High Junction Temperature: 85 °C. 

 

Also, the usage number of logic elements and their connections in 

the device can be changed depending on the optimization technique. 

Table 2 shows the number of usage logic elements in balanced, 

area, and speed optimization technique and Table 3 shows the 

number of interconnections between logic elements in balanced, 

area, and speed optimization technique.  

Table 2:  A synthesis comparison between optimization technique 

implementations of Meta-h Function  

 Balance Area Speed 

Total Logic Elements 801 780 817 

4 input functions 554 514 540 

3 input functions 112 124 155 

<=2input functions 135 142 122 

Total Fan-Out 2854 2744 2901 

Average Fan-Out 3.05 3.00 3.04 

Max Fan-Out 124 126 129 

 

 

Table 3: A fitter comparison between optimization technique 

implementations of Meta-h Function 

 Balance Area Speed 

In
te

rc
o

n
n

ec
ts

 Block 905 898 931 

C16 105 142 109 

C4 455 515 491 

Local 384 382 402 

R24 110 87 96 

R4 511 519 497 

Direct Links 181 181 198 

Global Clocks 0 0 0 

Pin-to-pin delays (TPD) delays, which are the time required for a 

signal from an input pin to propagate through combinational logic 

and appear at an external output pin, were extracted from the timing 

reports of implementing balanced, area and speed optimization for 

synthezing the Meta-h function: 

 In Balanced optimization technique, longest TPD from source 

pin "INPUT[25]" to destination pin "OUTPUT_H[2]" was 

37.131 ns. 

 In Area optimization technique, longest TPD from source pin 

"INPUT[0]" to destination pin "OUTPUT_H[31]" is 39.831 ns. 

 In Speed optimization technique, longest TPD from source pin 

"INPUT[21]" to destination pin "OUTPUT_H[18]" is 39.055 

ns. 

 

 

Appendix B:   Timing comparison between  

                      Meta-h function and h function 

 

Meta-h function consumes more time comparing by ordinary h 

function in Twofish algorithm where these delay approximately 

equal to 12 ns by implementing in the same EP2C70F896C6, 

Cyclone II device. Table 4 shows a comparison between Meta-h 

function and h function delays. Figure 13 shows a comparison chart 

of delays in our design.  

 

Table 4: Delays comparison between Meta-h function and  

h function 

 Balance Area Speed 

Longest pin to pin delay 

for Meta-h Function 
37.131 39.831 39.055 

Longest pin to pin delay 

for h Function 
25.868 26.707 27.713 

 

 

Figure 13: Delays in our design for Meta-h function and  

http://www.altera.com/support/examples/vhdl/vhdl.html
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h function 

 

The four Meta-h functions to generate the expanded keys and g 

functions in each round of Meta-Twofish algorithm can be done in 

parallel. So, each round in Meta-Twofish algorithm consumes 12 ns 

and 192 ns for 16 rounds more than Twofish algorithm to encrypt 

128-bit packet.  

 

 

 

Appendix C:       Sample VHDL code 

                     For CLU in Meta-h function 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.all; 

USE ieee.std_logic_arith.all; 

USE ieee.std_logic_unsigned.all; 

 

ENTITY Meta_Operation IS 

    port (in_y0, in_y1 :      in  std_logic_vector(7   downto 0); 

             in_y2, in_y3 :      in  std_logic_vector(7   downto 0); 

          L :                       in  std_logic_vector(15 downto 0); 

             Operation_bits :  in  std_logic_vector(1   downto 0); 

       Rotation_bits   :  in  std_logic_vector(2   downto 0); 

             out_y0, out_y1 : out std_logic_vector(7  downto 0); 

             out_y2, out_y1 : out std_logic_vector(7  downto 0)); 

END Meta_Operation; 

 

ARCHITECTURE behavioral OF Meta_Operation IS  

  signal Temp_0, Temp_1 : std_logic_vector(7 downto 0); 

  signal Temp_2, Temp_3 : std_logic_vector(7 downto 0); 

   

BEGIN 

     

Temp_0 <=  in_y0 xor L(31 downto 24)   

      when    Operation_bits="00"    else      not in_y0   

      when    Operation_bits="01"    else            in_y0   

      when    Operation_bits="11"     else             

 

                    in_y0 

      when Operation_bits="10" and Rotation_bits="000"  else 

                    in_y0(0) & in_y0(7 downto 1)  

      when Operation_bits="10" and Rotation_bits="001"  else 

                 in_y0(1 downto 0) & in_y0(7 downto 2)  

      when Operation_bits="10" and Rotation_bits="010"  else 

                 in_y0(2 downto 0) & in_y0(7 downto 3)  

      when Operation_bits="10" and Rotation_bits="011"  else 

                 in_y0(3 downto 0) & in_y0(7 downto 4)  

      when Operation_bits="10" and Rotation_bits="100"  else 

                 in_y0(4 downto 0) & in_y0(7 downto 5)  

      when Operation_bits="10" and Rotation_bits="101"  else 

                 in_y0(5 downto 0) & in_y0(7 downto 6)  

      when Operation_bits="10" and Rotation_bits="110"  else 

                 in_y0(6 downto 0) & in_y0(7)           

      when Operation_bits="10" and Rotation_bits="111"; 

--------------------------------     

                

Temp_1 <=  in_y1 xor L(23 downto 16)   

      when    Operation_bits="00"    else 

                 not in_y0   

       : 

  : 

  -------------------------------- 

 

Temp_2 <=  in_y2 xor L(15 downto 8)   

      when    Operation_bits="00"    else 

                 not in_y2   

       : 

  : 

  -------------------------------- 

 

Temp_3 <=  in_y3 xor L(7 downto 0)   

      when    Operation_bits="00"    else 

                 not in_y3   

       : 

  : 

  -------------------------------- 

  

    out_y0 <= Temp_0; 

 out_y1 <= Temp_1; 

 out_y2 <= Temp_2; 

 out_y3 <= Temp_3; 

 

END behavioral; 
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