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Abstract: The Generalized Crypto Logic Unit (GCLU) is a key-driven encryption function modified from the Crypto Logic Unit (CLU)
which is defined as the cipher engine of Metamorphic Stone Cipher. This Crypto Logic Unit uses eight bit-balanced operations. These
operations are: XOR, INV, ROR, NOP, XNOR, SWAP, ROL, RevOr for bitwise xor, invert, rotate right, no operation, xnor, swap, rotate
left, and reverse order respectively. In addition, we provide the Software and Field Programmable Gate Array (FPGA) implementation of the
Generalized Crypto Logic Unit.
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1. Introduction

The Crypto Logic Unit (CLU) is considered the cipher engine
of the key-driven Stone Metamorphic Cipher [1], [2], and is
used to modify many famous ciphers to increase the cipher’s
entropy and improve its security. These modified ciphers
include the Metamorphic Twofish Cipher [3], the
Metamorphic MARS Cipher [4], and the Metamorphic-Key-
Hopping GOST Cipher [5]. The CLU is built using four low-
level bit-balanced operations. These operations are: XORing
a key bit with a plaintext bit (XOR), inverting a plaintext bit
(INV), exchanging one plaintext bit with another one in a
given plaintext word using a right rotation operation (ROR),
and producing a plaintext bit without any change (NOP). The
Generalized Crypto Logic Unit (GCLU), on the other hand,
extrapolates the idea of using the bit-balanced four low-level
operations in eight low-level bit-balanced operations. These
are: the four operations of the CLU plus four other low-level
operations. These newly-added operations are: XNORing a
key bit with a plaintext bit (XNOR), swapping a plaintext bit
with another one in a given plaintext word (SWAP), a left
rotation operation (ROL), and the reverse order operation that
reverses a plaintext word (RevOr). In the following sections,
we discuss the GCLU structure, and its software and
hardware implementations. Finally, we provide a summary
and our conclusions.

2. Generalized Crypto Logic Unit (GCLU)

As discussed in the introduction section, the Generalized
Crypto Logic Unit (GCLU) is a modified Crypto Logic Unit,
which is defined in the key-driven Stone Metamorphic cipher,
by adding four more operations to the CLU operations. The
resulting eight low-level operations are:
 (XOR) by XORing a key bit with a plaintext bit,

 (INV) by inverting a plaintext bit,
 (NOP) by producing the plaintext without any change,
 (ROR) by exchanging one plaintext bit with another one

in a given plaintext word using a right rotation operation,
 (XNOR) by XNORing a key bit with a plaintext bit,
 (SWAP) by exchanging one plaintext bit with another

one in a given plaintext word using a swap operation,
 (ROL) by exchanging one plaintext bit with another one

in a given plaintext word using a left rotation operation,
 (RevOr) by exchanging one plaintext bit with another

one in a given plaintext word using a reverse order
operation.

Figure 1 shows the basic generalized crypto logic unit and
Table 1 demonstrates the details of each one of the GCLU
operations

Figure 1. The basic generalized crypto logic unit (GCLC)
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Table 1. GCLU operations

Mnemonic Operation
Select Operation

Code
XOR Ci = Ki⊕ Pi “000”
INV Ci =  Pi “001”
ROR Ci = Pi⋙ m “010”
NOP Ci = Pi “011”

XNOR Ci = Ki ⊙ Pi “100”
SWAP Ci = # Pi “101”
ROL Ci = Pi⋘ m “110”

RevOr Ci = ⇵ Pi “111”

Similar to the CLU, the GCLU can be used as the encryptor
and the decryptor where by changing the output cipher bit to
become an input plaintext bit, the new output will be the same
as the old plain text bit. But, this is a feature for XOR, INV,
NOP, XNOR, SWAP, or RevOr functions. The exceptions are
in the cases of the decryptor of ROR will use ROL, and the
decryptor of ROL will use ROR. Appendix A shows the truth
table of GCLU. Likewise, the operation_selection_bits (S2 S1

S0) can be chosen from any three sub-key bits; the same idea
applies for the rotation_selection_bits (S’n⋯S’0). Figure 2
shows the locations of operation selection bits and rotation
selection bits.

Figure 2. The proposed key format where the location of the
operation and rotation selection bits is shown

3. The Algorithm

In this section, we provide the formal description of the Ulta
Crypto Logic Unit as follows:

Function Ulta Crypto Logic Unit (GCLU)
Begin
1. Read the next plaintext message Pi;
2. Read the next sub-key Ki;
3. Read n-bit rotation_selection_bits from sub-key where

2n=Block size B;
4. Read 3-bit operation_selection_bits form sub-key;
5. Use operation selection & rotation selection bits to select
and perform the operation:

XOR when operation_selection_bits=“000”
INV when operation_selection_bits=“001”
ROR when operation_selection_bits=“010”
NOP when operation_selection_bits=“011”

XNOR when operation_selection_bits=“100”
SWAP when operation_selection_bits=“101”
ROL when operation_selection_bits=“110”

RevOr when operation_selection_bits=“111”;
6. Perform the encryption operation using plaintext bit and
sub-key bit to get a cipher bit;
7. Store the resulting cipher bit;
End;

4. Software/Hardware Implementation

A pseudo C++ function [6] of the generalized crypto logic
unit is applied representing the truth table of GCLU utilizing
Microsoft Visual C++ 2010 Express. Appendix C provides a
sample C++ code for the GCLU. Figure 3 shows the correct
build solution of the C++ project of GCLU. Figure 4 is the
execution screen of GCLU. Furthermore, a proof-of-concept
FPGA-based implementation is used to encrypt a one byte
plaintext using one byte sub-key word. We have implemented
the GCLU applying the VHDL hardware description
language and utilizing Altera design environment Quartus II
13.0 Service Pack 1 Web Edition [7]. The FPGA design was
implemented using EP2C5AF256A7, Cyclone II family
device. Appendix D represents the sample VHDL code for
GCLU. The implementation results and the schematic
diagram for GCLU are shown in Figure 5. The RTL screen
and technology map viewer for GCLU are shown in Figures
6, and 7 respectively. Figure 8 demonstrates the floor plan for
GCLU. The details of the analysis and synthesis summary and
timing analyzer are shown in appendix B.

Figure 3. C++ project of GCLU showing the correct build
solution

Figure 4. Execution screen of the C++ project of GCLU
showing the truth table of the GCLU
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Figure 5. Schematic diagram of GCLU showing also correct
implementation

Figure 6. RTL screen for GCLU

Figure 7. Technology Map viewer of GCLU

Figure 8. Floor-plan of Chip of GCLU

5. Summary and Conclusions

We have presented the Generalized Crypto Logic Unit
(GCLU) which is a modified version of the crypto logic unit
(CLU) of the key-driven Stone Metamorphic Cipher. The
GCLU is constructed using eight bit-balanced operations. The
eight low-level operations are pseudo-randomly chosen using
three key-dependent selection bits. These operations are:
bitwise xor, invert, rotate right, no operation, xnor, swap,
rotate left, and reverse order. In addition, we have shown that
the generalized crypto logic unit can be implemented as
Software or FPGA-based Hardware. We have included a
proof-of-concept software and FPGA hardware
implementations. The aim of modifying the CLU to be GCLU
is to increase a cipher’s entropy by providing a higher degree
of randomness and thus an enhanced security. This GCLU is
then utilized to modify well-known ciphers in order to achieve
key-dependent encryption.
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Appendix A: The truth table of the GCLU

Pi Ki →Pj S2 S1 S0 Operation Ci

0 0 0 0 0 0 XOR 0
0 0 0 0 0 1 INV 1
0 0 0 0 1 0 ROR 0
0 0 0 0 1 1 NOP 0
0 0 0 1 0 0 XNOR 1
0 0 0 1 0 1 SWAP 0
0 0 0 1 1 0 ROL 0
0 0 0 1 1 1 RevOr 0

0 0 1 0 0 0 XOR 0
0 0 1 0 0 1 INV 1
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0 0 1 0 1 0 ROR 1
0 0 1 0 1 1 NOP 0
0 0 1 1 0 0 XNOR 1
0 0 1 1 0 1 SWAP 1
0 0 1 1 1 0 ROL 1
0 0 1 1 1 1 RevOr 1

0 1 0 0 0 0 XOR 1
0 1 0 0 0 1 INV 1
0 1 0 0 1 0 ROR 0
0 1 0 0 1 1 NOP 0
0 1 0 1 0 0 XNOR 0
0 1 0 1 0 1 SWAP 0
0 1 0 1 1 0 ROL 0
0 1 0 1 1 1 RevOr 0

0 1 1 0 0 0 XOR 1
0 1 1 0 0 1 INV 1
0 1 1 0 1 0 ROR 1
0 1 1 0 1 1 NOP 0
0 1 1 1 0 0 XNOR 0
0 1 1 1 0 1 SWAP 1
0 1 1 1 1 0 ROL 1
0 1 1 1 1 1 RevOr 1

1 0 0 0 0 0 XOR 1
1 0 0 0 0 1 INV 0
1 0 0 0 1 0 ROR 0
1 0 0 0 1 1 NOP 1
1 0 0 1 0 0 XNOR 0
1 0 0 1 0 1 SWAP 0
1 0 0 1 1 0 ROL 0
1 0 0 1 1 1 RevOr 0

1 0 1 0 0 0 XOR 1
1 0 1 0 0 1 INV 0
1 0 1 0 1 0 ROR 1
1 0 1 0 1 1 NOP 1
1 0 1 1 0 0 XNOR 0
1 0 1 1 0 1 SWAP 1
1 0 1 1 1 0 ROL 1
1 0 1 1 1 1 RevOr 1

1 1 0 0 0 0 XOR 0
1 1 0 0 0 1 INV 0
1 1 0 0 1 0 ROR 0
1 1 0 0 1 1 NOP 1
1 1 0 1 0 0 XNOR 1
1 1 0 1 0 1 SWAP 0
1 1 0 1 1 0 ROL 0
1 1 0 1 1 1 RevOr 0

1 1 1 0 0 0 XOR 0
1 1 1 0 0 1 INV 0
1 1 1 0 1 0 ROR 1
1 1 1 0 1 1 NOP 1
1 1 1 1 0 0 XNOR 1
1 1 1 1 0 1 SWAP 1
1 1 1 1 1 0 ROL 1
1 1 1 1 1 1 RevOr 1

Appendix B: The analysis & synthesis and fitter
report details

FPGA synthesis of GCLU for 1-byte inputs consumes 83
logic elements to perform multiplexers with no registers, and
needs 17.255 ns from input port “Plaintext[7]” to output port
“Ciphertext[7]”. Table 2 and Table 3 show the number of
usage logic elements and the interconnections between them
in Area, Speed, and Balanced optimization technique. Figure
9 shows the delays in the design of the GCLU.

Analysis & Synthesis and Fitter Summary
•Family: Cyclone II
•Device: EP2C5AF256A7
• Nominal Core Voltage: 1.20 V
• Minimum Core Junction Temperature: -40 °C
• Maximum Core Junction Temperature: 125 °C.

•Optimization Technique: Balanced
•Total logic elements: 83 out of 4,608 (2%)

-- Combinational with no register:83
-- Register only:0
-- Combinational with a register:0

Logic element usage by number of LUT inputs
-- 4 input functions: 47
-- 3 input functions: 34
-- <=2 input functions: 2
-- Register only: 0

Logic elements by mode
-- Normal mode: 83
-- Arithmetic mode: 0

• Total LABs: 6 out of 288 (2 %)
• Total fan-out: 302
• Average fan-out: 2.75
• Highest non-global fan-out: 27
• Maximum fan-out: 27

•Block interconnects: 80 out of 15,666 (< 1 % )
•C16 interconnects: 7 out of 812 (< 1 % )
•C4 interconnects: 69 out of 11,424 (< 1 % )
•Direct links: 7 out of 15,666 (< 1 % )
•Global clocks: 0 out of 8 (0 %)
•Local interconnects: 48 out of 4,608 (1 % )
•R24 interconnects: 7 out of 652 (1 % )
•R4 interconnects: 34 out of 13,328 (< 1 % )

Table 2. A synthesis comparison between optimization
technique implementations of GCLU

Balanced Area Speed

Total logic elements 83 84 83
Total combinational
functions

83 84 83

4 input functions 47 44 60
3 input functions 34 39 19

<=2 input functions 2 1 4
Total fan-out 302 303 313
Maximum fan-out 27 23 31
Average fan-out 2.75 2.73 2.85

Table 3. A fitter comparison between optimization
technique implementations of GCLU
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Balanced Area Speed

Block interconnects 80 81 103
C16 interconnects 7 4 13
C4 interconnects 69 69 68
Direct links 7 2 5
Global clocks 0 0 0
Local interconnects 48 49 50
R24 interconnects 7 5 8
R4 interconnects 34 39 53

Timing Analyzer Summary
In Balanced Optimization

• Longest propagation delay was 17.255 ns from input port
“Plaintext[7]” to output port “Ciphertext[7]”.
• Longest minimum propagation delay was 7.182  ns from
input port “Plaintext[1]” to output port “Ciphertext[7]”.

In Area Optimization
• Longest propagation delay was 17.639 ns from input port
“Plaintext[0]” to output port “Ciphertext[2]”.
• Longest minimum propagation delay was 7.229 ns from
input  port “Plaintext[2]” to output port “Ciphertext[4]”.

In Speed Optimization
• Longest propagation delay was 15.911 ns from input port
“Plaintext[4]” to output port “Ciphertext[3]”.
• Longest minimum propagation delay was 6.708  ns from
input  port “Plaintext[4]” to output port “Ciphertext[5]”.

Figure 9. Delays in the design of the GCLU

Appendix C: Sample C++ code for GCLU

#include <iostream>
#include <bitset>
using namespace std;

bitset<1> encrypt (bitset<1> P_bit,
bitset<1> k_bit,
bitset<1> ROR_bit,
bitset<1> ROL_bit,
bitset<1> SWAP_bit,
bitset<1> RevOr_bit,
bitset<1> sel_bit2,
bitset<1> sel_bit1,
bitset<1> sel_bit0)

{
bitset<1> a,b,c,d,e,f,g,h;
a=(P_bit ^ k_bit) & (~sel_bit2) &(~sel_bit1)&(~sel_bit0);
b=(~ P_bit) & (~sel_bit2) &(~sel_bit1)&( sel_bit0);
c=(ROR_bit) & (~sel_bit2) &( sel_bit1)&(~sel_bit0);
d=(P_bit) & (~sel_bit2) &( sel_bit1)&( sel_bit0);

e=(~ (P_bit ^ k_bit)) &(sel_bit2)&(~sel_bit1)&(~sel_bit0);
f=(SWAP_bit) &(sel_bit2)&(~sel_bit1)&( sel_bit0);
g=(ROL_bit) &(sel_bit2)&( sel_bit1)&(~sel_bit0);
h=(RevOr_bit) &(sel_bit2)&( sel_bit1)&( sel_bit0);

bitset<1> cipher_bit = a|b|c|d|e|f|g|h;
return cipher_bit;
}
int main ()
{

cout << encrypt(0,0,0,0,0,0,0,0,0) << endl;
cout << encrypt(0,0,0,0,0,0,0,0,1) << endl;
cout << encrypt(0,0,0,0,0,0,0,1,0) << endl;
cout << encrypt(0,0,0,0,0,0,0,1,1) << endl;
cout << encrypt(0,0,0,0,0,0,1,0,0) << endl;
cout << encrypt(0,0,0,0,0,0,1,0,1) << endl;
cout << encrypt(0,0,0,0,0,0,1,1,0) << endl;
cout << encrypt(0,0,0,0,0,0,1,1,1) << endl;
⁞
⁞
⁞

cout << encrypt(1,1,1,1,1,1,0,0,0) << endl;
cout << encrypt(1,1,1,1,1,1,0,0,1) << endl;
cout << encrypt(1,1,1,1,1,1,0,1,0) << endl;
cout << encrypt(1,1,1,1,1,1,0,1,1) << endl;
cout << encrypt(1,1,1,1,1,1,1,0,0) << endl;
cout << encrypt(1,1,1,1,1,1,1,0,1) << endl;
cout << encrypt(1,1,1,1,1,1,1,1,0) << endl;
cout << encrypt(1,1,1,1,1,1,1,1,1) << endl;

return 0;
}

Appendix D: Sample VHDL code for GCLU

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
USE IEEE.NUMERIC_STD.ALL;

ENTITY GCLU IS
PORT( P : in std_logic_vector (7 downto 0);

K : in std_logic_vector (7 downto 0);
C : out std_logic_vector (7 downto 0));

END GCLU;

ARCHITECTURE behavioral OF GCLU IS

SIGNAL Operation_sel_bits: std_logic_vector (7 downto 0);
SIGNAL Rortaion_sel_bits : std_logic_vector (7 downto 0);

SIGNAL SWAP_P : std_logic_vector (7 downto 0);
SIGNAL RevOr_P : std_logic_vector (7 downto 0);

BEGIN

Operation_sel_bits <= K(7) & K(5) & K(3);
Rortaion_sel_bits <= K(1) & K(0) & K(4);

C <= P XOR K WHEN Operation_sel_bits="000" ELSE
NOT P WHEN Operation_sel_bits="001" ELSE
P WHEN Operation_sel_bits="011" ELSE
P XNOR K WHEN Operation_sel_bits="100" ELSE
SWAP_P WHEN Operation_sel_bits="101" ELSE
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RevOr_P WHEN Operation_sel_bits="111" ELSE

---ROR------
P WHEN

Operation_sel_bits="010" AND Rortaion_sel_bits="000"
ELSE

P(0) & P(7 downto 1) WHEN
Operation_sel_bits="010" AND Rortaion_sel_bits="001"

ELSE
P(1 downto 0) & P(7 downto 2) WHEN

Operation_sel_bits="010" AND Rortaion_sel_bits="010"
ELSE

P(2 downto 0) & P(7 downto 3) WHEN
Operation_sel_bits="010" AND Rortaion_sel_bits="011"

ELSE
P(3 downto 0) & P(7 downto 4) WHEN

Operation_sel_bits="010" AND Rortaion_sel_bits="100"
ELSE

P(4 downto 0) & P(7 downto 5) WHEN
Operation_sel_bits="010" AND Rortaion_sel_bits="101"

ELSE
P(5 downto 0) & P(7 downto 6) WHEN

Operation_sel_bits="010" AND Rortaion_sel_bits="110"
ELSE

P(6 downto 0) & P(7) WHEN
Operation_sel_bits="010" AND Rortaion_sel_bits="111"

ELSE
---ROL------

P WHEN
Operation_sel_bits="110" AND Rortaion_sel_bits="000"

ELSE
P(6 downto 0) & P(7) WHEN

Operation_sel_bits="110" AND Rortaion_sel_bits="001"
ELSE

P(5 downto 0) & P(7 downto 6) WHEN
Operation_sel_bits="110" AND Rortaion_sel_bits="010"

ELSE
P(4 downto 0) & P(7 downto 5) WHEN

Operation_sel_bits="110" AND Rortaion_sel_bits="011"
ELSE

P(3 downto 0) & P(7 downto 4) WHEN
Operation_sel_bits="110" AND Rortaion_sel_bits="100"

ELSE
P(2 downto 0) & P(7 downto 3) WHEN

Operation_sel_bits="110" AND Rortaion_sel_bits="101"
ELSE

P(1 downto 0) & P(7 downto 2) WHEN
Operation_sel_bits="110" AND Rortaion_sel_bits="110"

ELSE
P(0) & P(7 downto 1) WHEN

Operation_sel_bits="110" AND Rortaion_sel_bits="111";

END behavioral;
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