
 1

A Hybrid Hiding Encryption Algorithm (HHEA)

For Data Communication Security

Mahmoud Shaar1, Magdy Saeb2, Usama Badawi1

1. Cairo University, Faculty of Science
Mathematics Dept., Computer Science Division,

Cairo, Egypt
2. Arab Academy for Science, Technology & Maritime Transport

School of Engineering, Computer Department
Alexandria, Egypt

Abstract
In this work, we present an encryption algorithm that can be used to for hardware-implemented
applications to secure data communications. This encryption algorithm is based on hiding a
number of bits from plain text message into a random vector of bits. The locations of the hidden
bits are determined by a key known to the sender and receiver. We call this algorithm hybrid
hiding encryption algorithm (HHEA). The name demonstrates the two basic operations of this
algorithm. These are operations include inserting part of the plaintext bits into a cover to hide it
from recognition. That is there are no conventional operations on the ciphered text, just plain
hiding in a random bit string. The name “Hybrid” is used to show that the algorithm has built-in
features that are inherited from data hiding techniques or “Steganography.” The distinctive
features of this algorithm are as follows:

• Key length is variable: the key length can be varied from 16 up to any larger value
depending on the security level required.

• Word length is variable: the block size can be varied between 1 to 16 bit or 1 to 32 and so
on. That is, encryption can be performed on 16 or 32 or 64 bit blocks. This, in turn, can
be used on different processor architectures employing 16, 32, or 64 bit registers.

• The algorithm, therefore, provides variable degrees of security. However, this increased
security level will be at the cost of increased size of the cipher-text.

• The number of rounds is variable: the whole process can be repeated r times using the
same key.

The method is quite suitable for hardware implementation employing Field programmable gate
arrays (FPGA).
Key words: encryption, data security, steganography, data hiding, data communication, FPGA.

1. Introduction

In this work, we present an encryption
algorithm that can be designed for hardware-
implemented applications to secure data
communications. The name demonstrates
the two basic operations of this algorithm.
These operations are based on inserting part
of the plaintext bits into a cover to hide it
from recognition. That is there are no
conventional operations on the ciphered text,

just plain hiding in a random bit string. The
name “Hybrid” is used to show that the
algorithm has built-in features that are
inherited from data hiding techniques or
“Steganography.” We call this algorithm
hybrid hiding encryption algorithm
(HHEA).
In the following few sections, we provide a
run through existing algorithms with some
comparative evaluation. We then turn to
describe our algorithm.

 2

The first algorithm that we discuss is RC4
[2, 4]. This algorithm is a variable-key-size
stream cipher. The general performance
problem with RC4 is that almost every
statement depends immediately on the
statement before it, including the table index
computation and the associated table
accesses, limiting the amount of parallelism.
On the other hand, SEAL [2, 4] is a
software-efficient stream cipher. The major
problem with this algorithm is the strong
dependency between consecutive operations,
allowing only minimal parallelism.
In block-encryption algorithms, DES [1, 5]
recognized world-wide, it set a precedent as
the first commercial-grade modern
algorithm with openly and fully specified
implementation details. The problem with
DES is that the size of the key space is too
small to be really secure. Khufu algorithm
[2, 4] can be simply implemented in
hardware at one clock per round. IDEA [2,
4] is used for message encryption in Pretty
Good Privacy (PGP). In fact, the speed of
hardware depends dramatically on how
much cost could be absorbed due to the need
for dedicated multipliers which are not
cheep. Skipjack [2] is NAS-developed
algorithm for the Clipper and Capstone
chips and it is considered secure. REDCO II
[2, 3] is secure because using the brute force
attack, 2160 operations are required to
recover the key. A summary of block
encryption algorithms is shown in Table 1.

Table 1

Summary of Block-encryption algorithms

 Key

Length
Block
Length

Problem

DES 56 bits 64 bits key too
small

Khufu 64 bits 64 bits key too
small

REDCO
II

160 bits 80 bits Secure

IDEA 128 bits 64 bits Patented
Skipjack 80 bits 64 bits Secret

2. Design methodology of the
proposed algorithm

On designing this algorithm, we have
considered that the crypto analyst knows all
details of the algorithm. This conforms to
“Kerckhoffs’ Principle” in cryptography,
which holds that “the security of a
cryptographic system should rely only
on the key material”.
The basic idea of our proposed encryption
algorithm is hiding a number of bits from
plain text message into a random victor of
bits. The location of the hiding bits are
determined by a pre agreed-upon key by the
sender and the receiver. The following
subsection gives more details about our
algorithm.

2.1 The Encryption process

The method is reasonably simple. We have a
key matrix KLx2 where,

1,..., ; L 16
{1, 2,3, 4,5, 6, 7,8}

1, 2ij
i L

k
j

∀ = ≥
∈

∀ =





This key is known only to the sender and
receiver. When the first party wants to send
a message M to the second party, he/she
determines the key 2LK × and every
character from the message is replaced by a
binary value. An eight-bit octet is generated
randomly and set in a temporary vector V.
the bits in the vector V from position K [1,1]
to position K[1,2] are replaced by bits from
the secret message. Then the resulting vector
V is stored in a file. As long as the message
file has not reached its end yet, we move to
the next row of the key matrix and another
octet is generated randomly and the
replacement is performed repeatedly and the
resulting vector is stored in the file. The
previous procedure is repeated over and over
again pending the end the message. The
resulting file is sent to the receiver who
beforehand has the key matrix. If the key
length is not enough to cover the whole
message during the encryption process, the
key will be reapplied over and over again

 3

until the encryption of the whole message is
completed. This formal algorithm is shown
next.

Algorithm HHEA
[Given a plain text message M and key matrix

2LK × where

1,..., ; L 16
{1, 2,3, 4,5, 6,7,8}

1, 2ij
i L

k
j

∀ = ≥
∈

∀ =





The aim of the algorithm is hiding a number
of bits from plain text message (M) into a
random vector (V) of bits. The locations of the
hidden bits are determined by the key 2LK ×]
Input:
M[plain text message], 2LK × [Key array]
Algorithm Body:
First: in a plain text file, each character is
sequentially replaced by its binary value.
i:=0
m := first digit in M file
while (m ≠ EOF) [EOF: End Of File]
i:=i mod L
Generate 8-bits randomly and set them in V
Vector
if (K[i,1]≤K[i,2]) then
 for j=K[i,1] to K[i,2]
 if (m ≠ EOF)
 then do
 V[j] = m
 m := next m in M file
 end do
 next j
else
 for j=K[i,1] downto K[i,2]
 if (m ≠ EOF)
 then do
 V[j] = m
 m := next m in M file
 end do
 next j
Save V in output file
i:= i+1
end while
Output: encrypted file
End algorithm.

2.2 The Decryption process

For decrypting the received encrypted file
the following steps are taken. An octet is
read from the encrypted binary plain text
message EBPM file, then it is set in a
temporary vector V, from this vector, bits
are extracted from position K(1,1) to
position K(1,2) and set in a BPM file. Since
the EBPM file is nonetheless not empty, the
next octet is read from the EBPM file and
then it is set in a temporary vector V. From
this vector, bits are extracted from position
K (2, 1) to position K (2, 2) and added to the
binary plain text message BPM file. The
above steps are repeated over and over again
until the EBPM file becomes empty. Every
octet form the BPM file is transformed to
the corresponding character, and then is put
in the plaintext file. When the EPBM is
empty the plaintext file becomes the
message.
In case that the key length is not enough to
cover the whole message during the
decryption process, the key will be reapplied
over and over again till the decryption of the
whole message is completed.

2.3 Key Length

Now we will show the number of possible
keys, i.e., the key space when the key length
is 16. The probability of replacing a string of
bits whose length ranges from 1 to 8 bit in
an octet is 1/64. Consequently, if the key
length is 16 there are 6416 = 7.9x1028
possible keys.
So we can say that if the attacker has a
cipher text and he knows that the key length
is 16, there are 7.9x1028 attempts to find the
correct key, i.e. , there are 7.9x1028 attempts
to find the correct plaintext or secret
message.
Assuming that a supercomputer working in
parallel is able to try 1012 attempts per
second, it will take 2.5x109 years to find the
secret message. Note that the universe is
only 1010 years old. This eliminates brute
force attack; however other types of attacks
will be discussed in future work.

 4

3. Algorithms analysis

The worst case, regarding storage
requirements, occurs when replacing one bit
only from message to the V vector. Hence,
cipher text equal eight times the size of the
plain text. We have analyzed worst case
running times for our encryption algorithm
and found that it has linear complexity of
O(n). Moreover, we have studied the
following:

• Key length is variable: the key
length can be varied from 16 up to
any larger value depending on the
security level required.

• Word length is variable: the block
size can be varied between 1 to 16
bits or 1 to 32 bits and so on. That
is, encryption can be performed on
16, 32 or 64 bit blocks. This, in turn,
can be used on different processor
architectures employing 16, 32, or
64 bit registers.

• The algorithm, therefore, provides
variable degrees of security.
However, this improved security
levels will be at the cost of increased
size of the cipher text.

• The number of rounds is variable:
the whole process can be repeated r
times using the same key.

.
4. Implementation

For the implementation of the above
algorithm, windows C++ program is
developed, as it is shown in the figure
below:

Figure 1: A view of the C++ window program
implementation of the HHEA algorithm.

The user is asked to supply the name of the
plaintext file, "message", and the name of
the key file (key matrix). The user selects
from the main menu "action\encrypt" in
order to encrypt the plaintext.

 5. Summary & Conclusions
Comparing our method with one time pad
we observe the following

1. An obvious drawback of the one-
time pad is that the key should be as
long as the plaintext, which
increases the difficulty of key
distribution and key management.
Regarding our method, the key
length is shorter than the plain text
in general.

2. In the one time pad the key can
never be used again. While in our
method the key can be used to
encrypt more than one message.

3. The one-time pad is suitable for a
few short messages. Our method is
suitable for all messages, regardless
its length

For higher degrees of data security, we
perform the following:

1. The process can be repeated on the
resulting ciphered file. That is, using
more than one round of encryption
cycles. The number of rounds
should be agreed upon by sender
and receiver before transmission
begins.

2. Encryption can be performed on 16,
32 or 64 bit blocks.

 References
[1] Menezes, A.. Handbook of Applied

Cryptography. Boca Raton, FL: CRC Press,
1997.

[2] Schneier, B. Applied Cryptography. New
York, Wiley, 1996.

[3] T.W. Cusick and M.C. Wood, “The
REDOC-II Cryptosystem,” Advances in
Cryptology—CRYPTO ‘90 Proceedings,
Springer-Verlag, 1991, pp. 545-563.

[4] Bruce Schneier and Doug Whiting. "Fast
software encryption: Designing encryption
algorithms for optimal software speed on the
Intel Pentium processor," In Biham [3],
pages 242-259, 1997.

[5] Stinson, D. Cryptography: Theory and
Practice. Boca Raton, FL: CRC Press, 1995

		(+20)12 241 0950
	2003-09-11T15:59:29+0200
	Alexandria
	Magdy M. Saeb
	I am the author of this document

