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Abstract: Real-time applications of steganography require that the processing delays are to be minimized. Therefore, 

hardware implementation is considered indispensable for this type of applications. In this chapter, we introduce 

concepts of steganographic micro-architectures for real-time data hiding employing Field Programmable Gate Arrays 

(FPGA). We examine video watermarking using FPGA, hardware wavelet-based data hiding, and Signature Hiding for 

FPGA intellectual property protection. Moreover, we discuss micro-architectures used for MPEG-4. Micro-architectures 

for Steganalysis and subliminal steganographic channels in cognitive radio are also discussed.  We provide an explanation 

of the complementary relation between Steganography and Cryptography. In this respect, we show that some micro-

architectures can be used for both Steganography and Cryptography data security techniques. Finally, we provide  

clarifications and  a brief description of the FPGA technology.  

1.1 Introduction and overview 

Steganography hides the existence of a message while Cryptography hides the meaning of the message. Both 
techniques are complementary and both are essential requirements for data security. Real-time applications, 
such as audio and video-based data hiding, require that the encountered processing delays should be kept to a 
minimum. Hence, hardware implementation of Steganographic techniques is considered indispensable for 
this type of applications. Moreover, software implementation usually requires an added special purpose 
processor.  This processor is usually a Digital Signal Processor chip. However, adding a steganographic 
component will consume only a relatively small implementation silicon area. In a large number of cases of 
consumer electronics, the cost, area, execution speed and power consumption comparisons are supporting 
the hardware solution.  
 
One of the most commonly used media for hardware implementation is Field Programmable Gate Arrays or 
what is known as FPGA Technology. In the following sections, we discuss steganographic FPGA-based 
micro-architectures used for real-time data hiding. These micro-architectures cover a wide area of applications 
such as wavelet-based hiding, steganographic context techniques, video watermarking, signature hiding for 
intellectual property protection and video steganography.  
 
Although steganography is distinctly separate from cryptography, we should follow the longtime advice of A. 
Kerckhoffs and assume that the only unknown to the opponent is a secret key. This idea protects the user 
from the misapprehension of applying òsecurity by obscurityó. History has repeatedly shown that this idea is 
destined to fail. Hardware-based steganography and watermarking are designed keeping in mind that they will 
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be examined by a well-informed expert opponent. Contemporary designers rely on a secret hiding key rather 
on the hiding technique itself. 

 

Chapter outline 

A steganographic shuffler and hiding algorithm are presented in section 1.2. Section 1.3 discusses a micro-
architecture for steganographic context. Section 1.4 examines video watermarking using FPGA. Section 1.5 
considers Wavelet data hiding using Achterbahn-128. Section 1.6 discusses Zero overhead watermarking 
technique for FPGA designs.  In section 1.7 Signature hiding techniques for FPGA intellectual property 
protection are discussed.  Section 1.8 provides some details regarding an FPGA watermarking micro-
architecture for MPEG-4. A micro-architecture for Steganalysis is discussed in section 1.9. Optimized sub-
channels, or subliminal steganographic channels, in cognitive radio is explained in section 1.10. Section 1.11 
provides a description of a micro-architecture that can be used for both steganography and cryptography. 
Finally, section 1.12 provides some notes and clarifications.  
 

1.2  Steganographic shuffler 
 

This shuffler design approach aims at spreading the message in an even manner over the entire multimedia 

cover file to emulate communication white noise [FASA04]. The shuffler randomly hides a number of bits 

less than or equal to the cover size with no possible location collision. However, increasing the hidden 

number of bits will eventually expose the existence of the message. The maximum number of bits that can be 

hidden in a cover, without perceptually detecting the existence of a hidden message, is called the channel or 

cover capability. We are using the term òchannel capabilityó [MOCN02] instead of òchannel capacityó to 

distinguish it from Shannonõs channel capacity based on the entropy concept [BRFO05].   To explain the 

method, we assume that sender Alice wants to send a hidden message to receiver Bob and both share a 

common secret key. In addition, we assume that the cover size is n Kbytes and we are hiding only one bit per 

octet of the cover, then the maximum message size is n/8 Kbytes or n Kbits. The term octet is used instead 

of byte since it has become customary to associate a byte with one text character rather than just eight 

consecutive bits. The shared key between Alice and Bob should be large enough to generate unique random 

addresses at least equal to the message size in bits. However to reduce the required number of addresses and 

the key space, two message bits are hidden in two consecutive cover locations. Therefore, if the message 

length is, say n bits, the required addresses or sub-keys will be n/2. The sub-key generator should provide a 

pseudo random set of sub-keys. In this case, a hash function can be utilized. Nevertheless to simplify the 

hardware, the designers developed their own simple sub-key generator and tested the output for the required 

degree of randomization. The conceptual block diagram is shown in Figure 1.1. 

 

 
 

Figure 1.1: The Shuffler conceptual block diagram [FASA04] 
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The òEmbedó block generates the stego-word. Each word is composed of two message bits and 14 cover 

bits. The two message bits are located in bit locations 0, and 8 respectively as shown in Figure 1.2. The 

address generator generates an address based on the input 8-bit sub-key.  

 
 

Figure 1.2: The Embed block conceptual diagram [FASA04] 

 

There are three different modes of operation of the shuffler: regular, segmented and cover-dependent 

shuffling. Cover-dependent shuffling has one or two-segment type. In each case,  the effective address is 

generated differently. The results of hiding in each case are shown in Figure 1.3. 

 

 
 

(a) Regular mode         (b) Segmented shuffling mode 

 

 

(c) Cover-dependent, one segment   (d) cover-dependent  two segments 

 

Figure 1.3: Results of hiding in various modes of address generation [FASA04] 

The sub-key generator, as stated before, could have been based on repeatedly using a hash function and 

changing its input. The sub-key generator is expected to provide addresses that are randomly distributed, 

access most blocks of the segment and generate consecutive addresses that are relatively as far as possible. 
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1.2.1 The algorithm description 

In the following few lines, we show the algorithm formal description for the hiding processes [FASA04].  The 
algorithm can be applied to video frames, audio files or any type of covers to hide a given message. It requires 
hiding uses a secret key known only to the sender and receiver. Put differently, given a message, the aim of 
the algorithm is to hide this message into a cover such that even if an attacker detects the existence of the 
message he or she will not be able to recover it without the secret key that is known only to sender and 
receiver.  This explanation, as seen by some, may overlap with the idea of water marking, however, the 
algorithm is designed to practically òhide the contentsó of a message. In other words, we have two levels of 
security and we are expanding the idea of steganography by hiding the òmessage existence and contentsó 
rather than the òmessage existence onlyó.  A screen shot of the software implementation for image and audio 
files is shown in Figure 1.4.  
 

Algorithm:  STEGOSHUFFLER 
 
INPUT:  Message M, Cover C, Key K, StateRegister SR  

OUTPUT: Modulated Cover CM 

Algorithm body: 

Begin 

1. Load a block of the message Blki into the message cache MC: 

Blki [M] ɸ [MC]; 

2. Load Key into the key Cache:  

K ɸ [KC]; 

3. Generate an address Adi; 

4. Address memory to get one cover word CW: 

M [Adi] ɸCWi; 

5. Hide two message bits (mi, mi+1) by replacing (C0, C8) in the cover word CW with (Mi, Mi+1): 

C [15:9], Mi+1, C[7:1],Mi ɸ CM ; 

6. Write back steganographic word: 

CMi ɸ CWi; 

7. If message cache is not empty: 

7.1 Circulate key cache one bit right:Circ1R [KC]; 
7.2 Shift message cache one bit right: 
Shif1R [MC]; 
7.3 Goto 3: 
GenerateAddressState ɸSR; 

8. Else if message cache is empty: 
 

If message not finished 
8.1 Load next block into message cache: 
Blki +1 [M] ɸ [MC]; 
8.2 Goto 3: 
GenerateAddressState ɸ SR; 

Else if message is finished then halt; 
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End Algorithm. 
 
 

We have applied this technique to different media files particularly audio files. Testing the resulting audio file 

by playing it back after hiding is performed, no perceptual audio changes were detected as long as the original 

sounds were present. However, it was noticed that in audio media covers with relatively long low volume or 

silent segments, some alteration noise can be detected by a keen and experienced listener. 

 

 

 

Figure 1.4: A screen shot of the software implementation of the algorithm for image and audio files 

[FASA04]  
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1.2.2 The micro-architecture 

The architecture is divided into an embedder processor and an SDRAM controller as shown in Figure 1.5. 
The embedder processor, depicted in this Figure, issues read and write commands to the memory, which are 
processed and reformatted by the SDRAM control and waits for a confirmation from memory to ensure 
stabilized output. The controller halts the process when hiding is complete. In the next sub-sections we 
discuss the various building blocks of the micro-architecture.  
   

The Embedder processor, the Address Generator, the Memory unit, the Shuffler, the Address Extender and 
the Control Unit are discussed in some detail. The embedder processor generates addresses to initially cache 
the message and key from memory. It also generates addresses to access the cover randomly for message bit 
hiding. The embedder processor is composed of an address generator module, key cache, memory cache, key 
cache counter, message counter, message cache counter, message pointer, stegoblock, address multiplexer, 
control unit, and status register. 
 
 

Key Cache Address generator

Stego BlockMessage Cache

Logic gates
Message Counter

Key Counter

Control UnitStatus register

8 bits Address 17 bits

2 bits Data Out 16 bits

Output Control 

Signals 10 bits
10 bits

Data In 6 bits

10 bits

4 bits

13 bits

 
 

 
Figure 1.5: The conceptual block diagram of the micro-architecture [FASA04] 

 
 

In the following few lines, a brief discussion of each of these components is provided.  The address generator 
is composed of a shuffler, a block pointer memory and a shift & concatenate unit. The address generator 
receives an eight bit key and outputs an address of 17 bits as shown in Figure 1.6. 
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We have chosen 17 bits only in order to access an image of size no more than 128 Kbytes. It is a common 
size where the size of video frames, most probably, never exceeds. Certainly this depends on the video quality 
and the employed compression technique. The status register indicates whether to use cover information in 
address generation. The cover is logically divided into eight segments. The status register indicates also 
whether to hide in all or some of the segments. The Block Pointer Memory module consists of 64 eight-bit 
counters. The module takes six bits as an input to decide which one of the counters is to be incremented. The 
outputs of all counters are concatenated to form 512 bits and sent to the shuffler. The Shuffler module 
receives 512 bits from the block pointer memory module. Based on the key, it selects one of 64 pointers to be 
transmitted to the shift and concatenate unit. Each pointer is eight-bit in length. Therefore, the address space 
for each pointer is 256 words. These 256 words are taken as one block. Therefore, if each time the octet 
generated from the key is different from the one generated before, then the message bit will be inserted into a 
different block in the image. As there are only 64 pointers, only 64 blocks can be addressed. This means that 
only 64x256 words can be used for hiding. This problem was overcome by using the upper bits of the octet 
generated from the key as a segment selector. Each segment is 16384-word large.  
 
As a result of this improvement, the message bits may be 16384 words apart in the best case and one- word 
apart in the worst case. This worst case will happen if a large number of octets in the key are repeated. 
Therefore, we have developed a short program for generating a key that covers the whole cover and selects 
the appropriate data and addresses in the right state to be sent to the memory. Some of the generated 
addresses by the different modules in the organization are less than 23 bits, which are needed to address the 
SDRAM. Therefore, an Address Extender is used to unify the output size to 23 bits. Finally, the control 
signals are generated in the hardwired control unit and provide control inputs for all integrated modules. The 
block diagram of the control unit and other major components is shown in Figure 1.6. 
 

.  

Figure 1.6: The details of the shuffler micro-architecture [FASA04] 
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This design is implemented and downloaded on the FPGA Spartan 2S100TQ144-6 device. As shown in 
Figure1.7, on the right hand side,  the design placed and routed on the FPGA chip.  On the left hand side of 
the same Figure, one observes two images; a cover (a) and the modulated cover image (b) with no visible 
artifacts. Moreover, the Laplacian Filter, based on computing the average of the four neighboring pixels, is 
computed for both images with no traces of hiding activities. 
 

  

 

Figure 1.7: The floor plan of the implemented stego-micro-architecture (left hand side) along with the cover 

(a) and the resulting modulated image (b) as well as the Laplacian filter outputs for both images and the filter 

output for the distorted cover (c ), (d), and (e) [FASA04] 

In summary, the address generator provides an output every one clock cycle. This is a major advantage as 
compared to SHA-based algorithms that requires 210 cycles or MD5 designs with 342 cycles.  The shuffler 
design is a conceptually developed hardware that provides the required randomization in the embedding 
process. The shuffler operates in parallel with the hiding module. This saves about 25 ns for each hidden bit.  
The address generator is capable of generating an address in a 32,768-byte block or in multiple of these 
blocks based on the user preference. This allows the user to efficiently handle different image sizes. This 
address generator design is particularly suitable for a special-purpose processor design since it needs large 
sizes of busses, like 64-bit and 512-bit busses, which cannot be supported by general-purpose processors. The 
address generator can generate various sequences of addresses for different frames from a single 32-byte key 
by xoring with the cover. This is an essential requirement for video hiding schemes, since it is not realistic to 
ask the user for a new key for each video frame. There is a large number of testing procedures for obscurity 
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that are called Steganalysis Techniques. However, by proper choice of the key, one can show that the 
approach provides an acceptable degree of data hiding with minimal distortion of the cover. This was proven 
utilizing the Laplacian Filter Technique. There is variation in the Laplacian filter outputs and no perceptible 
artifacts in the stego image when compared to the cover image. Therefore, one can conclude that the 
approach is refined enough to escape the watchful eyes of a passive adversary.  
 

1.3  Architecture for steganographic context 
 

The òConTextó technique utilizes the image noisy regions and those with abrupt gray-level changes to hide 

information [HFUC08]. Some researchers relate these areas of abrupt changes to edge detection where the 

hiding will largely take place. The messages hidden in these regions are quite difficult to detect. However, the 

process to locate these regions is highly repetitive and computationally expensive. To overcome these 

difficulties, the technique is implemented using FPGA. Accordingly, the method provides a high throughput 

and reduced computational time.  The procedure [HFUC08], conceptually illustrated in Figure 1.8, can be 

summarized as follows: 

 

Algorithm Steganographic ConText 

 

INPUT:  Image file in n-bit blocks 

SUMMARY: Produces blocks with a hidden message in most noisy locations. 

1. The image is divided into non-overlapping blocks of, say, 3 x 3 pixels. 

2. Each 3 x 3 block is subdivided into four 2 x 2-pixel sub-blocks. 

3. Each sub-block is considered valid if there are at least three different values of gray scale levels. 

(These levels, using 8-bit gray scale, are from 0 to 255. These are measures of the 

monochromatic light intensity of each pixel.) 

4. The message is inserted in the 3 x 3 block center, if the four sub-blocks are valid. 

5. After the hiding, the validity of the four sub-blocks is verified once more. If one or more sub-

block is not valid after hiding, then the inserted bit is discarded and this part of the process is 

repeated again for hiding this bit to avoid losing information during the recovery process. 

 

 

Figure 1.8 : The hiding process where b, c, d, e are the checked four 2 x 2 sub-blocks. [HFUC08] 
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1.3.1 The micro-architecture 

A top-down methodology was used to develop the FPGA micro-architecture. The micro-architecture 

Register Transfer Language (RTL) representation, resulting from using Altera, Quartus development 

software, is shown in Figure 1.9. 

 

 

Figure 1.9: The ConText technique RTL block diagram [HFUC08] 

 

In this implementation, the input and output ports are: DIN is the input of the pixel value of the cover 

image, Information is the message to be hidden, CLK is the clock input port and RST is the reset input.  

The Output port output the central pixel value of the 3 x 3 matrix after inserting the information in the in 

the cover object. InfOu tput provides the extracted message of the central pixel or stego-object. SHide is the 

hiding selection activation port. Conta controls the input of the 8-bit message that will be hidden in the cover 

object. Figures 1.10 provides the details of the register file and the comparator RTL representations 

respectively. Figure 1.11 displays the details of the ConText sub-block.  
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Figure 1.10: The register file and the ConText block RTLs [HFUC08] 

 

 

Figure 1.11: The ConText sub-block RTL [HFUC08] 
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1.3.2 Implementation results  

The micro-architecture was implemented using Altera Cyclone II EP2C35F672C6 device. At a 106 MHz 

maximum operating frequency, the authors claim a  throughput that is about 61.54 Mbps. The cover and the 

output stego-images are shown in Figure 1.12. The medical image shown below is given as an example only 

since any alterations can result in a partial loss of information leading to faulty diagnosis by the physician. 

 

Figure 1.12 : Input cover images  and output stego-images [HFUC08] 

This micro-architecture, as stated by the authors, performs eight comparisons in a single clock cycle. 
Therefore, it is not likely that this hardware implementation can be outperformed by a software one. This 
Figure clearly demonstrates that the embedding process showed no perceptual traces or artifacts in the cover 
image. The micro-architecture, when integrated with other hardware applications, is expected to prove its 
validity. 
 

1.4 Video watermarking using FPGA 
 

Video watermarking, similar to still image watermarking, has visible and invisible types [CRUZ06]. Visible 
watermarking corresponds to traditional paper-based watermarking. Digital processing is required to retrieve 
the invisible one. If the original image is available, the effect of watermarking can be exposed by deducting 
the original image from the water marked one. However, the result may be different from the original water 
mark. In this respect, there are several types of digital watermarking schemes that are summarized in Figure 
1.13. 
 

 
 

Figure 1.13 : Various types of watermarking schemes 
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Capturing and then processing a video stream frame by frame, one can realize that video watermarking is an 
extension of still image watermarking. However, there are some differences. These differences are: no visible 
or audible alterations is allowed in the playback of video recordings, no effect on the compressibility of the 
digital contents, provides reliable detection, the implemented hardware should be of low cost, should have no 
effect on bit rate, can be performed directly on the compressed file, the method used should provide 
manageable time and space complexity and finally unauthorized removal is interdicted [CRUZ06].  
 
1.4.1 H ardware implementation 
 
Until recently,  as shown in [CRUZ06], few hardware implementations were available. Most of the hardware 
was implemented in ASIC designs. However, the advances in FPGA technology have dramatically changed 
this situation. Software implementation usually requires an added a special digital signal processor. On the 
other hand, in the hardware implementation, the added watermarking component will assume only a relatively 
small implementation area. In a large number of studied cases of consumer electronics, the cost, area and 
power consumption comparisons are backing a hardware solution. In the next few lines, we discuss some of 
these water marking implementations. This comparison is certainly based on commercial applications 
excluding unreliable freeware releases. 
 
1.4.2 Just Another Watermarking System (JAWS) 

 
 
The embedder and detector JAWS [CRUZ06] is a 0.18Ǫm CMOS technology implementation.  One of its 
advantages is that it works on raw uncompressed video data. This allows the user to freely select his or her 
own compression algorithm.  The implementation has a pipelined architecture and Fast Fourier Transform 
FFT processing core. The results provided a watermarking of video streams at a rate of 30 frames per sec and 
320 x 320 pixels per frame. The chip is capable of operating at 75 MHz and process a peak pixel rate of over 
3 mega pixels per sec. The watermark consumes four bits per frame. The power consumption for the 
embedder is 60 mW and for the detector is 100 mW. Figure 1.14 provides the JAWS Embedder conceptual 
block diagram. 
 

 
 

Figure 1.14 :  JAWS Embedder Implementation conceptual block diagram [CRUZ06] 
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1.4.3 Mohanty FPGA implementation 
 
An FPGA-based implementation of an invisible, robust, spatial domain and still-image watermarking encoder 
is presented in [CRUZ06]. The hardware-based watermarking system can be implemented on an FPGA 
board, a TriMedia DSP, or a custom integrated circuit. The selection may be reduced to choosing an FPGA 
or an integrated circuit implementation. The watermarking encoder consists of a watermark generator, 
watermark insertion module, and a controller. The invisible watermarking algorithm inserts pseudorandom 
numbers to a host data. Synthesis was performed with SynplifyPro and simulations were run on ModelSim 
software. The FPGA device used was the Xilinx Virtex2 XCV50. It was operated at 50MHz frequency. The 
results show an execution time of 19.842 ns for the overall process.  The block diagram of the architecture is 
shown in Figure 1.15. 
 
 
 
 

 
 

 
Figure 1.15 : Block Diagram of the Mohanty FPGA Implementation. [CRUZ06] 

 
 
1.4.4 Hardware watermarking for surveillance systems 
 
The system architecture developed for this purpose is demonstrated in Figure 1.16, shown below. The 
architecture is based on the data flow diagram that is shown in this Figure. The processing is performed on an 
8 x 8 pixel block size basis. The system uses a pipelined architecture to process eight numbers in parallel. 
Several 8 x 8 blocks of random numbers are generated and act as pseudo-noise signal that is used for 
modulating the watermark bit. 
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Figure 1.16 : System Architecture of the surveillance water marking system [CRUZ06] 
 
 

Once the 64 different random numbers are generated, they are transformed using DCT and stored in a RAM. 
The DCT core processes a block of pixels and the result is quantized using the quantization matrix values (Q 
ROM). The contents stored in the RAM are then added to the quantized values if they are nonzero values. 
The pipelined design allows parallelization in-time for various computations. The respective computational 
steps are shown in Figure 1.17. 
 
 

 
 
 

Figure 1.17 : The computational steps of the system [CRUZ06] 
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The pseudo-random generator is implemented using a Linear Feedback Shift register (LFSR), as shown in 
Figure 1.18. It is a 13-bit register producing a sequence space of 8191 bits. 
 

 
Figure 1.18:  The pseudo random generator   [CRUZ06] 

 
The following step is to compute the Discrete Cosine Transform (DCT). Figure 1.19 illustrates the basic 
building blocks of this DCT. Quantization is performed following this step. The high frequency components 
are removed from the DCT coefficients.  The process provides a compressed version of the original 8 x 8 
block. Finally, the watermark addition is performed by adding the contents of the RAM to the quantized 
DCT coefficients of the pixels using a 12-bit adder. A control unit, previously shown in Figure 1.16, is used 
to organize the whole process using timing and control signals. 

 
Figure 1.19 : The block diagram of the DCT [CRUZ06] 

 
 
The details of the DCT are obtained from [CRUZ06]. Figure 1.20 illustrates some of the DCT core details 
and the Rom-and-Accumulate structure (RAC). For more details, the interested reader is referred to 
[CRUZ06]. 
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Figure 1.20 : Details of The DCT architecture [CRUZ06] 

 
 

The FPGA performance, as reported in [CRUZ06], is as follows:  
Latency for the pipelined-FPGA design is found to be 372 clock cycles. A number of 212 clock cycles is 
required for additional outputs. The time required to mark one frame for an M x M pixel resolution is given 
by: 
 

Tot_Cycles_for1_frame = 1 x latency + ((N x M) / ( 8 x 8) -1) x Throughput  1.4.1 
 
As an example, using a 640 x 480 video, the number of cycles it would take to watermark one frame would be 
1017760 clock cycles. The time it takes to watermark one frame can be obtained by multiplying the number 
of clock cycles by the clock period. The maximum clock frequency is 60 MHz. Thus, the minimum clock 
period is 16.66 ns. This results in 0.01696 seconds per frame. Therefore, the FPGA implementation can mark 
about 59 frames per second at the maximum clock frequency.  For a standard 30 fps video the FPGA circuit 
duty cycle will be approximately ½. The power dissipation was reported to be about 90 mW. To achieve more 
power savings, the system frequency can be lowered up to 30 MHz to process about 30 fps. The cost of 
FPGA implementation is much less as compared to DSP implementations. 
 

1.5 Wavelet data hiding using Achterbahn-128 
 
 
There are two major categories of data hiding; hiding in the spatial domain or hiding in the frequency domain. 
The later provides better security against passive attackers whose major objective is to detect the existence of 
a hidden message. In this approach[MDDE07], the message is embedded in the wavelet frequency domain by 
modifying a set of selected wavelet coefficients of the host image. Moreover,  the utilized variable data size is 
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encrypted using Achterbahn-128 stream cipher before embedding takes place. The system is implemented 
using FPGA.  
 
In this approach,  a single- dimensional discrete wavelet transform, sometimes viewed as a repeated filter 
bank algorithm [MDDE07], is utilized. The input is transformed with high and low-pass filters. The low-pass 
filter branch generates the running average or what is known as the òtrendó Discrete Wavelet Transform 
(DWT) coefficients of the signal. The high-pass branch generates the running difference or the òfluctuationsó 
of the DWT coefficients. As the filter pair processes the signal, the output is carried off by a factor of two.  
The Haar Wavelet Transform, used in this approach, is one of these DWT techniques. The Haar transform 
can be summarized as follows: 
 
Assume a discrete signal, or an analog signal g(t) that occurs at discrete instants. In addition, assume equally-
spaced samples which number is 2n where n is the number of bits used to represent the number of samples, 
then 
 

f = (f1, f2, é, fN),     1.5.1 
 

Where fi = g(ti) " i=1,2,.., N. 
 
Then the running averages are given by: 
 

Cm = (f2m-1 + f2m)/  Õ2,               1.5.2 
 

And the running differences are given by:  
 

dm = (f2m-1 - f2m)/  Õ2,              1.5.3 
 

Where m = 1,2,.., N/2. 
The Haar wavelet transform is  symbolically given by: 
 

  

f¼H1Ý ( C2 | d 2)     1.5.4 
 

The energy is conserved after the transform is performed on the signal. The transform is sometimes called 
the òdata microscopeó since it reduces the bandwidth to half  its original size and amplifies the signal trends 

by Õ2.  
 
Filtering the signal controls the resolution of the signal, while the sub-sampling process controls the scale. 
Scale and frequency are inversely proportional such that higher frequencies correspond to lower or finer 
scales. On the other hand, lower frequencies correspond to higher or coarser scales. The filters separate the 
frequency bandwidth. Therefore, the filter pairs produce different resolutions, or levels, of detail.  The mean 
coefficients are stored in the first half of the space, and the detail coefficients are stored in the latter half. The 
mean coefficients are then processed again through the same set of filters producing a second set of average 
and detail coefficients This DWT decomposition of the signal proceeds until the sought after scale is 
achieved.  Two-dimensional signals, such as images, are transformed using the two-dimensional DWT. Given 
a two-dimensional array of samples, the rows of the array are processed first with only one level of 
decomposition. This essentially divides the array into two vertical halves, with the first half storing the average 
coefficients, while the second vertical half stores the detail coefficients.  
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This process is repeated again with the columns, resulting in four sub-bands within the array defined by filter 
output. Figure 1.21 shows a single-level decomposition using the two-dimensional DWT. This process results 
in the well-known four classes of coefficients; the (HH ) coefficients represent diagonal features of the image, 
whereas (HL and LH ) reflect vertical and horizontal information. At the coarsest level, we also keep low pass 
coefficients (LL) [MDDE07].  

 
Figure 1.21:  The Hierarchical representation of the Haar wavelet signal decomposition  [MDDE07] 

 
 
Algorithm: Embedding Data in Wavelet Transform 

 
INPUT: message and cover image file 
SUMMARY: The message is encrypted and embedded in the wavelet domain by modifying selected Haar 
discrete wavelet transform (DWT) coefficients of the cover image. 
 
1. Convert the secret message into a 1D bit stream. The information bits are encrypted using 
ACHTERBAHN-128 stream cipher before embedding them in the elements of the cover.  
2. Before modifying the coefficients, a pseudorandom permutation of  the message is used for increasing 
security of embedded message. The idea behind the permutation is that the permutation generator uses the 
stego key and produces as output different sequences of the set {1, 2, 3,é, length (message)}. This ensures 
that only recipients who have the corresponding secret key will be able to extract the message from a stego-
object. 
3. Decompose the cover image by using the one-level Haar Wavelet Transform. 
4. The data sequence should be inserted into the least significant bit (LSB) of the wavelet sub-band 
coefficients starting from HH to HL according to the data length.  
5. Insert not only the data sequence but also the data length sequence N since the receiver must know the 
data length in order to extract the data. 
6. Once the embedding process is completed, the stego image is produced by applying the Inverse  Wavelet 
Transform (IWT) on the modified coefficients. 
 
The extracting process is summarized as shown in the following algorithm: 
 
 
Algorithm: Extracting Data in Wavelet Transform 

 
INPUT: Stego-image 
SUMMARY: The stego-image is decomposed using Haar DWT and the message is recovered.  
 
1. Decompose image by using Haar Wavelet Transform. 


