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Abstract � In the well-known �prisoners' problem�, a 

representative example of steganography, two persons attempt to 

communicate covertly without alerting the warden. One approach to 

achieve this task is to embed the message in an innocent-looking 

cover-media. In our model, the message contents are scattered in the 

cover in a certain way that is based on a secret key known only to 

the sender and receiver. Therefore, even if the warden discovers the 

existence of the message, he will not be able to recover it. In other 

words a covert or subliminal communication channel is opened 

between two persons who possess a secret key to reassemble its 

contents. In this article, we propose a video or audio steganographic 

model in which the hidden message can be composed and inserted in 

the cover in real-time. This is realized by designing and 

implementing a secret key steganographic micro-architecture 

employing Field Programmable Gate Arrays FPGA. 

 

I. INTRODUCTION 

 
In this work, we present a hardware implementation of a secret-key 

steganographic algorithm. The basic idea of our algorithm is 

selecting the hiding bits in a pseudorandom manner as a function of 

a secret key to increase obscurity. The receiver needs only the 

modulated cover and the secret key to recover the message, i.e., no 

original cover is required. 

 

II. THE ALGORITHM 
 

ALGORITHM STEGO 

Input: Message M, Cover C, Key K, State Register SR

1. Load a block of the message Blki 

 into the message cache MC 

2.  Load Key into the key Cache KC 

3.  Generate an address Adi 

4.  Address memory to get one cover word CW 

5. Hide two message bits (mi, mi+1)  

7. If message cache is not empty 

 7.1 Circulate key cache one bit right 

 7.2 Shift message cache one bit right 

 7.3 Goto 3 

8. Else if message cache is empty 

            If message not finished 

 8.1 Load next block into message cache 

8.2 Goto 3 

Else if message is finished then halt 

        End Algorithm. 

 Output: Modulated Cover CM  

 

III. THE MICRO-ARCHITECTURE 

The architecture is divided into an embedder processor and an 

SDRAM controller. The embedder processor basic components are 

shown in Figure 1. The embedder processor issues read and write 

commands to the memory, which are processed and reformatted by 

the SDRAM control and waits for a confirmation from memory to 

ensure stabilized output. The controller halts the process when 

hiding is complete. In the next section we discuss the various 

building blocks of our proposed micro-architecture. 
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 The Embedder Processor Overview and Organization 

 

The embedder processor generates addresses to initially cache the 

message and key from memory. It also generates addresses to access 

the cover randomly for message bit hiding. The embedder processor 

is composed of an address generator module, key cache, memory 

cache, key cache counter, message counter, message cache counter, 

message pointer, stegoblock, address multiplexer, control unit, and 

status register.  

The address generator is composed of a shuffler, a block pointer 

memory and a shift & concatenate unit. The address generator 

receives an eight bit key and outputs an address of 17 bits as shown 

in Figure 2.  We have chosen 17 bits only in order to access an 

image of size no more than 128 Kwords, e.g. 256Kbytes. It is a 

common size where video frames most probably never exceed. 
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The shuffler module receives 512 bits from the block pointer 

memory module and based on the key, it selects one of 64 pointers to 

be transmitted to the shift and concatenate unit. Each pointer is eight 

bits. Therefore, the address space for each pointer is 256 words. We 

consider these 256 words as one block. Therefore, if each time the 

octet generated from the key is different from the one generated 

before, then the message bit will be inserted into a different block in 

the image. As there are only 64 pointers, only 64 blocks can be 

addressed. This means that only 64x256 words can be used for 

hiding. This problem was overcome by using the upper bits of the 

octet generated from the key as a segment selector. Each segment is 

16384-word large. As a result of this improvement, the message bits 

may be 16384 words apart in the best case and one word apart in 

worst case. This worst case will happen if a large number of octets in 

the key are repeated. Therefore, we have developed a short program 

for generating a key that covers the whole cover image and attempts 

all blocks evenly. This new key also avoids large repetition in the 

key octets. Therefore, the hiding will not be biased towards a certain 

area of the image. 

The message cache is organized as a rather large shift register. 

Blocks of this message is cached during the hiding process. The bits 

that are shifted out are the message bits that are needed to be hidden 

in the cover image.  

The message cache improves performance as it saves eight memory 

calls per bit, during the hiding process. The memory used in this 

design is a synchronous dynamic RAM, which requires more cycles 

in the read and write operations than the static RAM. The dynamic 

RAM on the other hand is larger and can support large images as is 

needed in our case. The SDRAM is divided into 512 columns and 

4096 rows. The addressing of consecutive words in same memory 

row requires three clock cycles. The addressing of words spaced out 

in different memory rows requires from 8 to 9 clock cycles. Since, 

changing the address from the cover location to the message location 

in the memory requires from 8 to 9 clock cycles, it is better to 

address the message consecutively and then address the cover. This 

improves performance and is achieved by caching the message 

before the start of the embedding process. 

The control signals are generated in the hardwired control unit and 

provide control inputs for all integrated modules. The block diagram 

of the control unit is shown in Figure 3. 
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It consists of one decoder, a state register, and a number of control 

logic gates. Based on some logic operations and on the state signals 

generated from the state register, a 10-bit output is generated by the 

control unit. This output consists of a ��� � � � � � � �  bit, which 

increments the address of the next message block to be loaded into 

cache, a ��� � � � � � �  ! � "  bit that controls message cache loading, a 

�#� �%$&�  and a �#� �%� "  bit that control the read/write signal of the 

SDRAM and some other control signals that synchronizes the 

dataflow between all the above mentioned components. 

 

SUMMARY AND CONCLUSION 

 
Motivated by the need for a fast hardware implementation suitable 

for real-time applications, we have provided a micro-architecture of 

a secret-key steganographic FPGA implementation. The distinctive 

features of this design are as follows:  

 

x The address generator generates an output every clock 

cycle. This is a major advantage as compared to other 

algorithm like SHA-based algorithm that requires 210 

cycles or MD5 designs with 342 cycles.  

x The shuffler design is our conceptually developed 

hardware that provides the required randomization in the 

embedding process. 

x The shuffler operates in parallel with the hiding module. 

This saves about 25 ns for each hidden bit. 

x This address generator design is particularly suitable for a 

special-purpose processor design since it needs large sizes 

of busses, like 64-bit and 512-bit busses, which cannot be 

supported by general-purpose processors. 

x The address generator is capable of generating an address 

in a 32,768-byte block or in multiple of these blocks based 

on the user preference. This allows the user to efficiently 

handle different image sizes.  

x The address generator can generate various sequences of 

addresses for different frames from a single 32-byte key by 

XORing with the cover. This is an essential requirement 

for video hiding schemes, since it is not realistic to ask the 

user for a new key for each video frame. 

We believe that our approach is refined enough to escape the 

watchful eyes of a passive adversary (the warden). Comparing this 

architecture with other types of steganographic algorithm 

implementations, we have demonstrated the dominance of our 

algorithm in time-critical applications. 

 

IMPLEMENTATION RESULTS 
 

Target Device: x2s100 

Target Package: tq144 

Target Speed   : -6 

Mapper Version: spartan2 -- C.22 

The Total Design 
Timing Summary: 

      Minimum period:  48.811ns (Maximum frequency:  20.487MHz) 

      Maximum combinational path delay:  49.783ns 

      Maximum net delay:  11.980ns 

Device utilization summary: 

   Number of External GCLKIOBs         2 out of 4         50% 

   Number of External IOBs                  43 out of 92       46% 

   Number of SLICEs                        1195 out of 1200   99% 

   Number of DLLs                                 2 out of 4         50% 

   Number of GCLKs                              1 out of 4         25% 

   Number of TBUFs                               2 out of 1280    1% 

 

CIRCUIT REALIZATIONS 

 
This design is implemented and downloaded on the FPGA Spartan 

2S100TQ144-6 chip. Figure 4 shown the design placed and routed 

on the FPGA chip. 
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