
Lines that will appear in the proceedings

6C-28 Design and Implementation of a Secret Key Steganographic Micro-
Architecture Employing FPGA
Magdy M Saeb and Hala A. Farouk Abdul Moneim .1

Lines that will appear in the program

6C-
28

Design and Implementation of a Secret Key Steganographic Micro-Architecture Employ-
ing FPGA
M. M. Saeb, H. A. Abdul Moneim (Arab Academy for Science, Tech. and Maritime
Transport, Egypt)

M. M. Saeb, H. A. F. Abdul Moneim

Design and Implementation of a Secret Key

Steganographic Micro-Architecture Employing FPGA

Hala A. Farouk, Magdy Saeb

Computer Engineering Department

Arab Academy for Science, Technology and Maritime Transport

Alexandria, EGYPT

Tel:+20106009703

e-mail: mail@magdysaeb.net

Abstract � In the well-known �prisoners' problem�, a

representative example of steganography, two persons attempt to

communicate covertly without alerting the warden. One approach to

achieve this task is to embed the message in an innocent-looking

cover-media. In our model, the message contents are scattered in the

cover in a certain way that is based on a secret key known only to

the sender and receiver. Therefore, even if the warden discovers the

existence of the message, he will not be able to recover it. In other

words a covert or subliminal communication channel is opened

between two persons who possess a secret key to reassemble its

contents. In this article, we propose a video or audio steganographic

model in which the hidden message can be composed and inserted in

the cover in real-time. This is realized by designing and

implementing a secret key steganographic micro-architecture

employing Field Programmable Gate Arrays FPGA.

I. INTRODUCTION

In this work, we present a hardware implementation of a secret-key

steganographic algorithm. The basic idea of our algorithm is

selecting the hiding bits in a pseudorandom manner as a function of

a secret key to increase obscurity. The receiver needs only the

modulated cover and the secret key to recover the message, i.e., no

original cover is required.

II. THE ALGORITHM

ALGORITHM STEGO

Input: Message M, Cover C, Key K, State Register SR

1. Load a block of the message Blki

 into the message cache MC

2. Load Key into the key Cache KC

3. Generate an address Adi

4. Address memory to get one cover word CW

5. Hide two message bits (mi, mi+1)

7. If message cache is not empty

 7.1 Circulate key cache one bit right

 7.2 Shift message cache one bit right

 7.3 Goto 3

8. Else if message cache is empty

 If message not finished

 8.1 Load next block into message cache

8.2 Goto 3

Else if message is finished then halt

 End Algorithm.

 Output: Modulated Cover CM

III. THE MICRO-ARCHITECTURE

The architecture is divided into an embedder processor and an

SDRAM controller. The embedder processor basic components are

shown in Figure 1. The embedder processor issues read and write

commands to the memory, which are processed and reformatted by

the SDRAM control and waits for a confirmation from memory to

ensure stabilized output. The controller halts the process when

hiding is complete. In the next section we discuss the various

building blocks of our proposed micro-architecture.

 � � � � � � � � �	�
 � � � �
 � � � �
 � � � � � � �
 � � � � � �

 The Embedder Processor Overview and Organization

The embedder processor generates addresses to initially cache the

message and key from memory. It also generates addresses to access

the cover randomly for message bit hiding. The embedder processor

is composed of an address generator module, key cache, memory

cache, key cache counter, message counter, message cache counter,

message pointer, stegoblock, address multiplexer, control unit, and

status register.

The address generator is composed of a shuffler, a block pointer

memory and a shift & concatenate unit. The address generator

receives an eight bit key and outputs an address of 17 bits as shown

in Figure 2. We have chosen 17 bits only in order to access an

image of size no more than 128 Kwords, e.g. 256Kbytes. It is a

common size where video frames most probably never exceed.

 � � � � � � � � ��� � � � � � � � � � � � � � � � �
 � � � � � �

Memory

of Pointers
 Shuffler

Key

Concatenate

and Shift Left

8 bit

512 bit 8 bit
17 bit

 Message

 Cache

Key Cache Address

 Generator

 Hiding

Message

Counter

 Key

Counter

 Control

 Unit

Logic

gates

Status

register

Address

17 bits

Data Out

16 bits

13 bits

4 bits

2 bits

Data In
6 bits

8 bits

10 bits

Output control

signals

10 bits

10 bits

0-7803-8175-0/04/$17.00c©2004 IEEE. 1

ASP-DAC 2004 Proceedings (6C-28)

10 bits

3 bits

3 bits
8 bits

10 bits

Status register

Control logic gates

 State register

 3 x 8 decoder

Output control signals

The shuffler module receives 512 bits from the block pointer

memory module and based on the key, it selects one of 64 pointers to

be transmitted to the shift and concatenate unit. Each pointer is eight

bits. Therefore, the address space for each pointer is 256 words. We

consider these 256 words as one block. Therefore, if each time the

octet generated from the key is different from the one generated

before, then the message bit will be inserted into a different block in

the image. As there are only 64 pointers, only 64 blocks can be

addressed. This means that only 64x256 words can be used for

hiding. This problem was overcome by using the upper bits of the

octet generated from the key as a segment selector. Each segment is

16384-word large. As a result of this improvement, the message bits

may be 16384 words apart in the best case and one word apart in

worst case. This worst case will happen if a large number of octets in

the key are repeated. Therefore, we have developed a short program

for generating a key that covers the whole cover image and attempts

all blocks evenly. This new key also avoids large repetition in the

key octets. Therefore, the hiding will not be biased towards a certain

area of the image.

The message cache is organized as a rather large shift register.

Blocks of this message is cached during the hiding process. The bits

that are shifted out are the message bits that are needed to be hidden

in the cover image.

The message cache improves performance as it saves eight memory

calls per bit, during the hiding process. The memory used in this

design is a synchronous dynamic RAM, which requires more cycles

in the read and write operations than the static RAM. The dynamic

RAM on the other hand is larger and can support large images as is

needed in our case. The SDRAM is divided into 512 columns and

4096 rows. The addressing of consecutive words in same memory

row requires three clock cycles. The addressing of words spaced out

in different memory rows requires from 8 to 9 clock cycles. Since,

changing the address from the cover location to the message location

in the memory requires from 8 to 9 clock cycles, it is better to

address the message consecutively and then address the cover. This

improves performance and is achieved by caching the message

before the start of the embedding process.

The control signals are generated in the hardwired control unit and

provide control inputs for all integrated modules. The block diagram

of the control unit is shown in Figure 3.

 � � � � � � � � � 	
 � � 	 � �
 � � � 	 � � � � � � � � �

It consists of one decoder, a state register, and a number of control

logic gates. Based on some logic operations and on the state signals

generated from the state register, a 10-bit output is generated by the

control unit. This output consists of a ��� � � � � � � � bit, which

increments the address of the next message block to be loaded into

cache, a ��� � � � � � � ! � " bit that controls message cache loading, a

�#� �%$&� and a �#� �%� " bit that control the read/write signal of the

SDRAM and some other control signals that synchronizes the

dataflow between all the above mentioned components.

SUMMARY AND CONCLUSION

Motivated by the need for a fast hardware implementation suitable

for real-time applications, we have provided a micro-architecture of

a secret-key steganographic FPGA implementation. The distinctive

features of this design are as follows:

x The address generator generates an output every clock

cycle. This is a major advantage as compared to other

algorithm like SHA-based algorithm that requires 210

cycles or MD5 designs with 342 cycles.

x The shuffler design is our conceptually developed

hardware that provides the required randomization in the

embedding process.

x The shuffler operates in parallel with the hiding module.

This saves about 25 ns for each hidden bit.

x This address generator design is particularly suitable for a

special-purpose processor design since it needs large sizes

of busses, like 64-bit and 512-bit busses, which cannot be

supported by general-purpose processors.

x The address generator is capable of generating an address

in a 32,768-byte block or in multiple of these blocks based

on the user preference. This allows the user to efficiently

handle different image sizes.

x The address generator can generate various sequences of

addresses for different frames from a single 32-byte key by

XORing with the cover. This is an essential requirement

for video hiding schemes, since it is not realistic to ask the

user for a new key for each video frame.

We believe that our approach is refined enough to escape the

watchful eyes of a passive adversary (the warden). Comparing this

architecture with other types of steganographic algorithm

implementations, we have demonstrated the dominance of our

algorithm in time-critical applications.

IMPLEMENTATION RESULTS

Target Device: x2s100

Target Package: tq144

Target Speed : -6

Mapper Version: spartan2 -- C.22

The Total Design
Timing Summary:

 Minimum period: 48.811ns (Maximum frequency: 20.487MHz)

 Maximum combinational path delay: 49.783ns

 Maximum net delay: 11.980ns

Device utilization summary:

 Number of External GCLKIOBs 2 out of 4 50%

 Number of External IOBs 43 out of 92 46%

 Number of SLICEs 1195 out of 1200 99%

 Number of DLLs 2 out of 4 50%

 Number of GCLKs 1 out of 4 25%

 Number of TBUFs 2 out of 1280 1%

CIRCUIT REALIZATIONS

This design is implemented and downloaded on the FPGA Spartan

2S100TQ144-6 chip. Figure 4 shown the design placed and routed

on the FPGA chip.

 � � � � � � ' � (� � � �)*� + � ,�� - � �
 . � � � � � �
 � 	
%� + � � / 0 1

2

