
 (IJCNS) International Journal of Computer and Network Security,
Vol. 1, No. 2, November 2009

1

The Stone Cipher-192 (SC-192): A Metamorphic
Cipher

Magdy Saeb

Computer Engineering Department,

Arab Academy for Science, Tech. & Maritime Transport
Alexandria, EGYPT

(On-Leave), Malaysian Institute of Microelectronic Systems MIMOS
Kuala Lumpur, MALAYSIA

mail@magdysaeb.net

Abstract: The Stone Cipher-192 is a metamorphic cipher that
utilizes a variable word size and variable-size user’s key. In the
preprocessing stage, the user key is extended into a larger table or
bit-level S-box using a specially developed one-way function.
However for added security, the user key is first encrypted using
the cipher encryption function with agreed-upon initial values. The
generated table is used in a special configuration to considerably
increase the substitution addressing space. Accordingly, we call
this table the S-orb. Four bit-balanced operations are pseudo-
randomly selected to generate the sequence of operations
constituting the cipher. These operations are: XOR, INV, ROR,
NOP for bitwise xor, invert, rotate right and no operation
respectively. The resulting key stream is used to generate the bits
required to select these operations. We show that the proposed
cipher furnishes concepts of key-dependent pseudo random
sequence of operations that even the cipher designer cannot
predict in advance. In this approach, the sub-keys act as program
instructions not merely as a data source. Moreover, the
parameters used to generate the different S-orb words are likewise
key-dependent. We establish that the self-modifying proposed
cipher, based on the aforementioned key-dependencies, provides
an algorithm metamorphism and adequate security with a simple
parallelizable structure. The ideas incorporated in the
development of this cipher may pave the way for key-driven
encryption rather than merely using the key for sub-key
generation. The cipher is adaptable to both hardware and
software implementations. Potential applications include voice
and image encryption.

 Keywords: metamorphic, polymorphic, cipher, cryptography,
filters, hash.

1. Introduction

A metamorphic reaction takes place in a rock when various
minerals go from amphibolites facies to some color schist
facies. Some of the minerals such as quartz may not take
place in this reaction. The process in its essence follows
certain rules; however the end result provides a pseudo
random distribution of the minerals in the rock or stone.
The metamorphic natural process results in thousands or
even millions of different shapes of the rock or stone. This
process has inspired us to design and implement a new
metamorphic cipher that we call “Stone Cipher-192”. The
internal sub-keys are generated using a combination of the
encryption function itself and a 192-bit specially-designed
one-way function. The idea of this cipher is to use four low
level operations that are all bit-balanced to encrypt the
plaintext bit stream based on the expanded stream of the

user key. The key stream is used to select the operation; thus
providing a random however recoverable sequence of such
operations. A bit-balanced operation provides an output that
has the same number of ones and zeroes. These operations
are XOR, INV, ROR and NOP. Respectively, these are,
xoring a key bit with a plaintext bit, inverting a plaintext
bit, exchanging one plaintext bit with another one in a given
plaintext word using a rotation right operation and
producing the plaintext bit without any change. In fact,
these four operations are the only bit-balanced logic
operations. In the next few sections, we discuss the design
rationale, the structure of the cipher, the one-way function
employed to generate the sub-keys, the software and
hardware implementations of the cipher, a comparison with
a polymorphic cipher and a discussion of its security against
known and some probable cryptanalysis attacks. Finally, we
provide a summary of results and our conclusions.

2. Design Rationale

It is a long-familiar fact that all ciphers, including block and
stream ciphers, are emulating a one-time pad OTP.
However, for provable security, the key bits have to be used
only once for each encrypted plaintext bit. Obviously, with
present day technology this is not a practical solution.
Alternatively, one resorts to computational complexity
security. In this case, the key bits will be used more than
once. Unfortunately, this will provide the cipher
cryptanalyst with the means to launch feasible statistical
attacks. To overcome these known attacks, we propose an
improvement in the nonlinearity-associated filtering of the
plaintext bits. This can be achieved in various ways as
shown in [1]; however, the process can be further simplified
and become appreciably faster and more riotously-secure if
we parallelize all operations employed. We will establish
that the proposed configuration can be further parallelized
to enormously improve its security and throughput. One can
imagine the algorithm as a pseudo random sequence of
operations that are totally key-dependent. Accordingly, we
presuppose that most known attacks will be very difficult to
launch since there are no statistical clues left to the attacker.
The algorithm utilized is randomly selected. Even the cipher
designer has no clear idea what is the sequence of bitwise

 (IJCNS) International Journal of Computer and Network Security,
Vol. 1, No. 2, November 2009

2

operations would be. The encryption low-level operations
are selected to be bit-balanced. That is, they do not provide
any bias to the number of zeroes or ones in the output
cipher. The result of such an approach will be the creation
of an immense number of wrong messages that conceal the
only correct one. Therefore, the cryptanalyst is left with the
sole option of attacking the key itself. However, if the sub-
keys are generated based on a cascade of the same
encryption function and a one-way hash, then we conceive
that these attacks will be unmanageable to launch. We are
producing an unexampled key-dependent encryption
algorithm. In this case, the least high-priced kept secret is
the key. The proposed system is malleable and resilient if
unknowingly disclosed. This theme does not dispute
Kerckhoffs' principle [2] or Shannon’s maxim since the
“enemy knows the system”. However, it provides a degree of
security against statistical attacks [3] that, we believe,
cannot be attained with conventional ciphers [4], [5], [6],
[7], [8],[9].

3. The Structure of the Cipher

The conceptual block diagram of the proposed cipher is
shown below in Figure 1. It is constructed of two basic
functions; the encryption function and the sub-key
generation one-way hash function. The pseudo random
number generator is built using the same encryption
function and the one-way hash function in cascade. Two
large numbers (a, b) are used to iteratively generate the sub-
keys. The details of the substitution box or what we call the
S-orb can be found in [1]. The user key is first encrypted
then the encrypted key is used to generate the sub-keys.

Figure 1. The structure of the cipher

The encryption function or the cipher engine is built using
four low-level operations. These are XOR, INV, ROR and
NOP. Table 1 demonstrates the details of each one of these
operations.

Table 1: The basic cipher engine (encryption function)
operations

Mnemonic Operation Select Operation
code

XOR Ci = Ki Pi 00
INV Ci = ¬(Pi) 01
ROR Pi ← Pj 10
NOP Ci = Pi 11

The basic crypto logic unit (CLU) is shown in Figure 2. All
operations are at the bit level. The unit is to be repeated a
number of times depending on the required word or block
size. The rotation operation, referred to by the circular
arrow, is performed using multiplexers as shown in Figure
3. In the software version these multiplexers are replaced by
“case” or “switch” statement. This CLU is used as the
encryptor or the decryptor. This can be easily verified, if we
investigate the truth table shown in Appendix A. In this
table, if we change the output cipher bit to become an input
plain text bit, the new output will be the same as the old
plain text bit. Obviously, this is a feature of the applied
functions namely XOR, INV or NOP. The only exception is
in the case of ROR, the decryptor will use ROL.

OR4

inst

XOR

inst5

AND3

inst8

AND3

inst9

AND3

inst10

AND3

inst11

7404

inst12

7404

inst14
7404

inst16

7404

inst17

7404

inst18

Pi Ki

S0

S1

Ci

Figure 2. The basic crypto logic unit

Figure 3. The rotation operation (ROTR) implementation

using multiplexers
The operation selection bits (S1 S0) can be chosen from any
two sub-key consecutive bits; as shown in Figure 4. The
same applies for the rotation selection bits (S’1 S’0).

Figure 4. The proposed key format where the location of the

selection bits is shown

4. The One-way Hash Function

Cryptographic one-way functions or message digest have
numerous applications in data security. The recent crypto-
analysis attacks on existing hash functions have provided

 (IJCNS) International Journal of Computer and Network Security,
Vol. 1, No. 2, November 2009

3

the motivation for improving the structure of such functions.
The design of the proposed hash is based on the principles
provided by Merkle’s work [10], Rivest MD-5 [11], SHA-1
and RIPEMD [12]. However, a large number of
modifications and improvements are implemented to enable
this hash to resist present and some probable future crypto-
analysis attacks. The procedure, shown in Figure 5,
provides a 192-bit long hash [13] that utilizes six variables
for the round function.

Figure 5. Operation of MDP-192 one-way function [13]

A 1024-bit block size, with cascaded xor operations and
deliberate asymmetry in the design structure, is used to
provide higher security with negligible increase in execution
time. The design of new hashes should follow, we believe,
an evolutionary rather than a revolutionary paradigm.
Consequently, changes to the original structure are kept to a
minimum to utilize the confidence previously gained with
SHA-1 and its predecessors MD4[14] and MD5. However,
the main improvements included in MDP-192[13] are: The
increased size of the hash; that is 192 bits compared to 128
and 160 bits for the MD-5 and SHA-1 schemes. The security
bits have been increased from 64 and 80 to 96 bits. The
message block size is increased to 1024 bits providing faster
execution times. The message words in the different rounds
are not only permuted but computed by xor and addition
with the previous message words. This renders it harder for
local changes to be confined to a few bits. In other words,
individual message bits influence the computations at a
large number of places. This, in turn, provides faster
avalanche effect and added security. Moreover, adding two
nonlinear functions and one of the variables to compute
another variable, not only eliminates the possibility of
certain attacks but also provides faster data diffusion. The
fifth improvement is based on processing the message
blocks employing six variables rather than four or five
variables. This contributes to better security and faster
avalanche effect. We have introduced a deliberate
asymmetry in the procedure structure to impede potential
and some future attacks. The xor and addition operations do
not cause appreciable execution delays for today’s
processors. Nevertheless, the number of rotation operations,
in each branch, has been optimized to provide fast
avalanche with minimum overall execution delays. To verify
the security of this hash function, we discuss the following
simple theorem [13]:

Theorem 5.1:
Let h be an m-bit to n-bit hash function where m >= n input
keys k1, k2 to h.
Then h (k1) = h (k2) with probability equal to:

2-m + 2-n – 2-m-n

Proof:
If k1 = k2 , then h (k1) = h (k2).
However, if k1≠ k2, then h(k1) = h(k2) with probability 2-n.
k1 = k2 with probability 2-m and k1≠ k2 with probability 1- 2-
m.
Then the probability that h (k1) = h(k2) is given by:

Pr {h (k1) = h (k2)} = 2-m + (1 - 2-m). 2-n
As an example, assume two 192-bit different keys x1, x2
then

Pr {h(x1) = h(x2)} = 2. 2-192 – 2-384
= 2-191 (1 - 2-193) ≈ 3.186 x 10-58

This is a negligible probability of collision of two different
keys.

5. The Pseudo Random Number Generator
(PRG)

The combination of the encryption function and the one-way
hash function is used to generate the sub-keys. The cipher
designer has to select which one should precede the other.
Based on the work by Maurer and Massey [15] where they
have proved that a cascade of two ciphers is as strong as its
first cipher. Therefore, we have adjudicated to start with the
encryption function. The one-way hash function is then used
recursively to generate the sub-keys based on two large
numbers that are derived from the user key. In this case, the
encryption function requires some initial agreed-upon vector
value (IV), [16], [17], [18] to complete the encryption
process. This IV can be regarded as a long-term key or even
a group-key that can be changed on a regular basis or when
a member leaves the group. The combination of the
encryption function and the one-way function are used as
the required pseudo random number generator PRG. It is
worth pointing out that the design of the cipher intentionally
allows the change of the one-way hash if successfully
attacked.

6. The Algorithm

The algorithm can be formally described as shown in the
next few lines.

Algorithm: STONEMETAMORPHIC

INPUT: Plain text message P, User Key K, Block Size B

OUTPUT: Cipher Text C

Algorithm body:

Begin

Begin key schedule

 (IJCNS) International Journal of Computer and Network Security,
Vol. 1, No. 2, November 2009

4

1. Read user key;

2. Encrypt user key by calling encrypt function and using
the initial agreed-upon values as the random input to this
function;

3. Read the values of the large numbers a and b from the
encrypted key;

4. Generate a sub-key by calling the hash one-way function
and using the constants a, b;

5. Store the generated value of the subkey;

6. Repeat steps 5 and 6 to generate the required number of
subkeys;

End key schedule;

Begin Encryption

7. Read a block B of the message P into the message cache;

8. Use the next generated 192-bit key to bit-wise encrypt the
plain text bits by calling the encrypt function;

9. If message cache is not empty, Goto step 8;

10. Else if message cache is empty:

If message not finished

10.1 Load next block into message cache;

10.2 Goto 8;

Else if message is finished then halt;

End Encryption;

End Algorithm.

Function ENCRYPT

Begin

1. Read next message bit;

2. Read next key bit from sub-key;

3. Read selection bits from sub-key;

4. Read rotation selection bits from sub-key;

5. Use selection & rotation bits to select and perform
operation: XOR, INV, ROR, NOP;

6. Perform the encryption operation using plaintext bit and
sub-key bit to get a cipher bit;

7. Store the resulting cipher bit;

End;

As seen from the above formal description of the algorithm,
it simply consists of a series of pseudo random calls of the
encryption function. However, each call will trigger a
different bitwise operation. The simplicity of this algorithm
readily lends itself to parallelism. This parallelism can be
achieved using today’s superscalar multi-threading
capabilities or multiple data paths on a specialized hardware
such as FPGA with their contemporary vast gate count.

7. Software Implementation

The pseudo C-function [19] that represents such a table is
given by:
encrypt (plain-text-bit, key-bit, selection-bit0, selection-bit1,
rot-bit)
{

a1= plain-text-bit ^ key-bit;
e1= a1 & (~selection-bit0) & (~selection-bit1);
b1= ~ plain-text-bit;
f1= b1 & (selection-bit0) & (~selection-bit1);
g1= rot-bit & (~selection-bit0) & (selection-bit1);
h1= plain-text-bit & (selection-bit0) & (selection-
bit1);
cipher-bit = e1|f1|g1|h1;
return (cipher-bit);

}

8. Hardware Implementation

The hardware version of the CLU, previously shown in
Figure 2, is FPGA-implemented. We have used Altera
Quartus II 6.1 Web Edition, [20]. The average delay per
byte was found to be 4.33 cycles per byte. Straightaway, if
we use four CLUs in-parallel, this delay will be
approximately equal to one cycle per byte. This proposed
parallel configuration is shown in Figure 6.

Figure 6. The proposed parallel configuration

A representative code of the Verilog file used to FPGA-
implement the CLU is given by:
module metamorph (p1,k1,s0,s1,p2,c1);

input p1,k1,s0,s1,p2;
output c1;
xor(a1,p1,k1);
and(e1,a1,~s0,~s1);
assign b1= ~p1;
and(f1,b1,s0,~s1);
and(g1,p2,~s0,s1);
and(h1,p1,s0,s1);
or(c1,e1,f1,g1,h1);

endmodule

 (IJCNS) International Journal of Computer and Network Security,
Vol. 1, No. 2, November 2009

5

9. Comparison with Chameleon Polymorphic
Cipher

As seen from the given analysis and results, one can
summarize the various characteristics of this cipher, when
compared to Chameleon Polymorphic Cipher [Saeb09], as
follows:

Table 2: A comparison between Stone Metamorphic Cipher
and Chameleon Polymorphic Cipher

Cipher
Characteristic

Chameleon-192
Polymorphic

Cipher

Stone-192
Metamorphic

Cipher
User key size Variable Variable
Sub-keys 192-bit K, S(K) 192-bit K,

S(K), S’(K)
Estimated
maximum
delay per byte

10 cycles/byte 6 cycles/byte

Estimated
average delay
per byte

9.1 cycles/byte 4.3 cycles/byte

PRG
(Sub-key
Generation)

One-way
Function

One-way
cascaded with
the Encryption
Function

Structural Sequential:
Sel-1, ROT, Sel-
0

Concurrent:
XOR, ROT,
INV, NOP

Number of
rounds

Variable (key-
dependent with
minimum equal
to 5 rounds)

Variable (key-
dependent with
minimum equal
to 8 rounds)

Algorithm
Template

Yes
(key changes
operation
parameters)

No
(key selects
operations)

Parallelizable Yes
(some
sequential
operations)

Yes
(operations are
selected
concurrently)

Security Secure Improved
Security (pseudo
random
sequence of
operations and
more secure
PRG)

10. Security Analysis

One claims that differential cryptanalysis, linear
cryptanalysis, Interpolation attack, partial key guessing
attacks, and side-channel attacks, barely apply in this
metamorphic cipher. The pseudo random selection of

operations provides the metamorphic nature of the cipher.
This, in turn, hides most statistical traces that can be
utilized to launch these attacks. Each key has its own unique
“weaknesses” that will affect the new form of the algorithm
utilized. Thus, different keys will produce completely
different forms (meta-forms) of the cipher. Even the cipher
designer cannot predict in advance what these forms are. It
can be easily shown that the probability of guessing the

correct sequence of operations is of the order of , where

w is the word size and N is the number of rounds. That is
for, say, a word size of 8 bits, the probability of guessing this

word only is . For a block size of 64 bits, this

probability is . Consequently, statistical analysis is not

adequate to link the plain text to the cipher text. With
different user keys, we end up with a different “morph” of
the cipher; therefore, it is totally infeasible to launch attacks
by varying keys or parts of the key. The only option left to
the cryptanalyst is to attack the key itself. To thwart this
type of attacks, we have used the encryption function as a
first stage in a cascade of the encryption function and the
one-way function. Regarding the key collision probability, it
was shown in section 4 that the key collision probability is
negligible when a 192-bit hash is applied. Moreover, the
cryptanalyst has a negligible probability of guessing the
correct form of the algorithm utilized. As was previously
discussed, the simple structure of the proposed cipher
provides a foundation for efficient software and hardware-
based implementation. Depending on the word or the block
size required, it is relatively easy to parallelize the data path
either using multi-threading on a superscalar processor or
by cloning this path on the FPGA material. Undeniably,
using the same encryption process and sub-keys for each
block is a disadvantage from a security point of view. Still,
this is exactly the same issue with block ciphers in general.
The advantage obtained from such a configuration, similarly
to block ciphers, is saving memory and communication
bandwidth on the chip and the channel levels. The pseudo
random selection of operations and the key-dependent
number of rotations provide a barrier against pattern leakage
and block replay attacks. These attacks are quite frequent in
multi-media applications. Using ECB mode, when
encrypting images with conventional ciphers, a great deal of
the structure of the original image is preserved [3]. This
contributes to the problem of block replay. However, the
selective operations allow the cipher to encrypt images with
no traces of the original image. This is a major advantage of
the Stone Metamorphic Cipher bit-level operations when
applied to multimedia files.

 (IJCNS) International Journal of Computer and Network Security,
Vol. 1, No. 2, November 2009

6

11. Summary & Conclusions

We have presented a metamorphic cipher that is altogether
key-dependent. The four bit-balanced operations are pseudo-
randomly selected. Known statistical attacks are barely
applicable to crypt-analyze this type of ciphers. The
proposed simple structure, based on the crypto logic unit
CLU, can be easily parallelized using multi-threading
superscalar processors or FPGA-based hardware
implementations. This presented CLU can be viewed as a
nonlinearity-associated filtering of the data and key streams.
The PRG, constructed from a cascade of the encryption
function and the one-way hash function, provides the
required security against known key attacks. On the other
hand, it easily allows the replacement of the hash function if
successfully attacked. The cipher is well-adapted for use in
multi-media applications. We trust that this approach will
pave the way for key-driven encryption rather than simply
using the key for sub-key generation.

Appendix A: The truth table of the CLU

Pi K i S’1 S’0
→→→→ Pj

S1 S0 OP Ci

0 0 0 0 0 XOR 0

0 0 0 0 1 INV 1

0 0 0 1 0 ROR 0

0 0 0 1 1 NOP 0

0 0 1 0 0 XOR 0

0 0 1 0 1 INV 1

0 0 1 1 0 ROR 1

0 0 1 1 1 NOP 0

0 1 0 0 0 XOR 1

0 1 0 0 1 INV 1

0 1 0 1 0 ROR 0

0 1 0 1 1 NOP 0

0 1 1 0 0 XOR 1

0 1 1 0 1 INV 1

0 1 1 1 0 ROR 1

0 1 1 1 1 NOP 0

1 0 0 0 0 XOR 1

1 0 0 0 1 INV 0

1 0 0 1 0 ROR 0

1 0 0 1 1 NOP 1

1 0 1 0 0 XOR 1

1 0 1 0 1 INV 0

1 0 1 1 0 ROR 1

1 0 1 1 1 NOP 1

1 1 0 0 0 XOR 0

1 1 0 0 1 INV 0

1 1 0 1 0 ROR 0

1 1 0 1 1 NOP 1

1 1 1 0 0 XOR 0

1 1 1 0 1 INV 0

1 1 1 1 0 ROR 1

1 1 1 1 1 NOP 1

References

[1] Magdy Saeb, “The Chameleon Cipher-192: A

Polymorphic Cipher,” SECRYPT2009, International
Conference on Security & Cryptography, Milan, Italy;
7-10 July, 2009.

[2] Auguste Kerckhoffs, “La cryptographie militaire,”
Journal des sciences militaire, vol. IX, pp. 5-83, Jan.
1883, pp.161-191, Feb. 1883.

[3] Swenson, C., Modern Cryptanalysis; Techniques for
Advanced Code Breaking, Wiley Pub. Inc., 2008.

[4] Merkle, R.C., “Fast Software Encryption Functions,”
Advances in Cryptology-CRYPTO ’90 Proceedings,
pages.476-501, Springer Verlag, 1991.

[5] Massey, J. L., “On Probabilistic Encipherment,” IEEE.
Information Theory Workshop, Bellagio, Italy, 1987.

[6] Massey, J.L., “Some Applications of Source Coding in
Cryptography,” European Transactions on
Telecommunications, vol. 5, No. 4, pp.7/421-15/429,
1994.

[7] Rogaway, P., Coppersmith, D., “A Software-oriented
Encryption Algorithm,” Fast Software Encryption
Cambridge Security workshop Proceedings, Springer-
Verlag, pages 56-63, 1994.

[8] Bruce Schneier, “Description of a New Variable-Length
key, 64-bit Block Cipher (Blowfish),” Fast Software
Encryption, Cambridge Security Workshop
Proceedings, Springer-Verlag, pages 191-204, 1994.

[9] Bruce Schneier, John Kelsey, Doug Whiting, David
Wagner, Chris Hall, Niels Ferguson, “ Twofish: A 128-
bit Block Cipher,” First AES conference, California,
US., 1998.

[10] Ralph C. Merkle, June, Secrecy, Authentication and
Public Key Systems, Ph.D. Dissertation, Stanford
University, 1979.

 (IJCNS) International Journal of Computer and Network Security,
Vol. 1, No. 2, November 2009

7

[11] Rivest, R.L., “The MD5 Message Digest Algorithm,”
RFC 1321, 1992.

 [12] Hans Dobbertin, Antoon Bosselaers, Bart Preneel,
“RIPEMD-160: A Strengthened Version of RIPEMD,”
Fast Software Encryption, LNCS 1039, Springer-
Verlag, pages 71–82, 1996.

[13] Magdy Saeb, “Design & Implementation of the
Message Digest Procedures MDP-192 and MDP-384,”
ICCCIS2009, International Conference on
Cryptography, Coding & Information Security, Paris,
June 24-26, 2009.

[14] Rivest, R.L., “The MD4 Message Digest Algorithm,”
RFC 1186, 1990.

[15] Ueli Maurer, James Massey, “Cascade Ciphers: The
Importance of Being First,” Journal of Cryptography,
vol. 6, no. 1, pp. 55-61, 1993.

[16] Discussions by Terry Ritter, et al., Accessed 2007.
http://www.ciphersbyritter.com/LEARNING.HTM.

[17] Erik Zenner, On Cryptographic Properties of LFSR-
based Pseudorandom Generators, Ph.D. Dissertation,
University of Mannheim, Germany, 2004.

[18] Erik Zenner, “Why IV Setup for Stream Ciphers is
Difficult,” Dagstuhl Seminar Proceedings 07021,
Symmetric Cryptography, March14, 2007.

[19] Michael Welschenbach, Cryptography in C and C++,
Apress, 2005.

[20] S. Brown, Z. Vranesic, Fundamental of Digital Logic
with Verilog Design, McGraw-Hill International
Edition, 2008.

Author Profile

Magdy Saeb received the BSEE. School
of Engineering, Cairo University, in
1974; the MSEE. and Ph.D. in Electrical
& Computer Engineering, University of
California, Irvine, in 1981 and 1985,
respectively. He was with Kaiser
Aerospace and Electronics, Irvine
California, and The Atomic Energy

Establishment, Anshas, Egypt. Currently, he is a professor
in the Department of Computer Engineering, Arab Academy
for Science, Technology & Maritime Transport,
Alexandria, Egypt, (on leave) to Malaysian Institute of
Microelectronic Systems (MIMOS), Kuala Lumpur,
Malaysia. His current research interests include
Cryptography, FPGA Implementations of Cryptography and
Steganography Data Security Techniques, Encryption
Processors, Computer Network Reliability, Mobile Agent
Security. www.magdysaeb.net.

