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Abstract: The Stone Cipher-192 is a metamorphic cipher that 
utilizes a variable word size and variable-size user’s key. In the 
preprocessing stage, the user key is extended into a larger table or 
bit-level S-box using a specially developed one-way function. 
However for added security, the user key is first encrypted using 
the cipher encryption function with agreed-upon initial values. The 
generated table is used in a special configuration to considerably 
increase the substitution addressing space. Accordingly, we call 
this table the S-orb.  Four bit-balanced operations are pseudo-
randomly selected to generate the sequence of operations 
constituting the cipher. These operations are: XOR, INV, ROR, 
NOP for bitwise xor, invert, rotate right and no operation 
respectively. The resulting key stream is used to generate the bits 
required to select these operations. We show that the proposed 
cipher furnishes concepts of key-dependent pseudo random 
sequence of operations that even the cipher designer cannot 
predict in advance. In this approach, the sub-keys act as program 
instructions not merely as a data source. Moreover, the 
parameters used to generate the different S-orb words are likewise 
key-dependent. We establish that the self-modifying proposed 
cipher, based on the aforementioned key-dependencies, provides 
an algorithm metamorphism and adequate security with a simple 
parallelizable structure. The ideas incorporated in the 
development of this cipher may pave the way for key-driven 
encryption rather than merely using the key for sub-key 
generation.  The cipher is adaptable to both hardware and 
software implementations. Potential applications include voice 
and image encryption. 
 
    Keywords: metamorphic, polymorphic, cipher, cryptography, 
filters, hash. 

1.   Introduction 

A metamorphic reaction takes place in a rock when various 
minerals go from amphibolites facies to some color schist 
facies. Some of the minerals such as quartz may not take 
place in this reaction. The process in its essence follows 
certain rules; however the end result provides a pseudo 
random distribution of the minerals in the rock or stone. 
The metamorphic natural process results in thousands or 
even millions of different shapes of the rock or stone. This 
process has inspired us to design and implement a new 
metamorphic cipher that we call “Stone Cipher-192”. The 
internal sub-keys are generated using a combination of the 
encryption function itself and a 192-bit specially-designed 
one-way function. The idea of this cipher is to use four low 
level operations that are all bit-balanced to encrypt the 
plaintext bit stream based on the expanded stream of the 

user key. The key stream is used to select the operation; thus 
providing a random however recoverable sequence of such 
operations. A bit-balanced operation provides an output that 
has the same number of ones and zeroes. These operations 
are XOR, INV, ROR and NOP. Respectively, these are,  
xoring  a key bit with a plaintext bit, inverting a plaintext 
bit, exchanging one plaintext bit with another one in a given 
plaintext word using a rotation right operation and 
producing the plaintext bit without any change. In fact, 
these four operations are the only bit-balanced logic 
operations. In the next few sections, we discuss the design 
rationale, the structure of the cipher, the one-way function 
employed to generate the sub-keys, the software and 
hardware implementations of the cipher, a comparison with 
a polymorphic cipher and a discussion of its security against 
known and some probable cryptanalysis attacks. Finally, we 
provide a summary of results and our conclusions. 

2.   Design Rationale 

It is a long-familiar fact that all ciphers, including block and 
stream ciphers, are emulating a one-time pad OTP. 
However, for provable security, the key bits have to be used 
only once for each encrypted plaintext bit. Obviously, with 
present day technology this is not a practical solution. 
Alternatively, one resorts to computational complexity 
security. In this case, the key bits will be used more than 
once. Unfortunately, this will provide the cipher 
cryptanalyst with the means to launch feasible statistical 
attacks. To overcome these known attacks, we propose an 
improvement in the nonlinearity-associated filtering of the 
plaintext bits. This can be achieved in various ways as 
shown in [1]; however, the process can be further simplified 
and become appreciably faster and more riotously-secure if 
we parallelize all operations employed. We will establish 
that the proposed configuration can be further parallelized 
to enormously improve its security and throughput. One can 
imagine the algorithm as a pseudo random sequence of 
operations that are totally key-dependent. Accordingly, we 
presuppose that most known attacks will be very difficult to 
launch since there are no statistical clues left to the attacker. 
The algorithm utilized is randomly selected. Even the cipher 
designer has no clear idea what is the sequence of bitwise 
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operations would be. The encryption low-level operations 
are selected to be bit-balanced. That is, they do not provide 
any bias to the number of zeroes or ones in the output 
cipher. The result of such an approach will be the creation 
of an immense number of wrong messages that conceal the 
only correct one. Therefore, the cryptanalyst is left with the 
sole option of attacking the key itself. However, if the sub-
keys are generated based on a cascade of the same 
encryption function and a one-way hash, then we conceive 
that these attacks will be unmanageable to launch. We are 
producing an unexampled key-dependent encryption 
algorithm. In this case, the least high-priced kept secret is 
the key. The proposed system is malleable and resilient if 
unknowingly disclosed. This theme does not dispute 
Kerckhoffs' principle [2] or Shannon’s maxim since the 
“enemy knows the system”. However, it provides a degree of 
security against statistical attacks [3] that, we believe, 
cannot be attained with conventional ciphers [4], [5], [6], 
[7], [8],[9]. 

3.   The Structure of the Cipher 

The conceptual block diagram of the proposed cipher is 
shown below in Figure 1. It is constructed of two basic 
functions; the encryption function and the sub-key 
generation one-way hash function. The pseudo random 
number generator is built using the same encryption 
function and the one-way hash function in cascade. Two 
large numbers (a, b) are used to iteratively generate the sub-
keys.  The details of the substitution box or what we call the 
S-orb can be found in [1]. The user key is first encrypted 
then the encrypted key is used to generate the sub-keys.  

 
Figure 1. The structure of the cipher  

The encryption function or the cipher engine is built using 
four low-level operations. These are XOR, INV, ROR and 
NOP. Table 1 demonstrates the details of each one of these 
operations. 
 

Table 1: The basic cipher engine (encryption function) 
operations 

Mnemonic Operation Select Operation 
code 

XOR Ci = Ki  Pi 00 
INV Ci = ¬(Pi) 01 
ROR Pi ← Pj 10 
NOP Ci = Pi 11 

 
The basic crypto logic unit (CLU) is shown in Figure 2. All 
operations are at the bit level. The unit is to be repeated a 
number of times   depending on the required word or block 
size. The rotation operation, referred to by the circular 
arrow, is performed using multiplexers as shown in Figure 
3. In the software version these multiplexers are replaced by 
“case” or “switch” statement. This CLU is used as the 
encryptor or the decryptor. This can be easily verified, if we 
investigate the truth table shown in Appendix A. In this 
table, if we change the output cipher bit to become an input 
plain text bit, the new output will be the same as the old 
plain text bit. Obviously, this is a feature of the applied 
functions namely XOR, INV or NOP. The only exception is 
in the case of ROR, the decryptor will use ROL. 
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Figure 2. The basic crypto logic unit 

 
Figure 3. The rotation operation (ROTR) implementation 

using multiplexers 
The operation selection bits (S1 S0) can be chosen from any 
two sub-key consecutive bits; as shown in Figure 4. The 
same applies for the rotation selection bits (S’1 S’0).  

 
Figure 4. The proposed key format where the location of the 

selection bits is shown 

4.   The One-way Hash Function 

Cryptographic one-way functions or message digest have 
numerous applications in data security. The recent crypto-
analysis attacks on existing hash functions have provided 



 (IJCNS) International Journal of Computer and Network Security,  
Vol. 1, No. 2, November 2009 

3 

the motivation for improving the structure of such functions. 
The design of the proposed hash is based on the principles 
provided by Merkle’s work [10], Rivest MD-5 [11], SHA-1 
and RIPEMD [12]. However, a large number of 
modifications and improvements are implemented to enable 
this hash to resist present and some probable future crypto-
analysis attacks.  The procedure, shown in Figure 5, 
provides a 192-bit long hash [13] that utilizes six variables 
for the round function.  
 

 
Figure 5. Operation of MDP-192 one-way function [13] 

A 1024-bit block size, with cascaded xor operations and 
deliberate asymmetry in the design structure, is used to 
provide higher security with negligible increase in execution 
time. The design of new hashes should follow, we believe, 
an evolutionary rather than a revolutionary paradigm.  
Consequently, changes to the original structure are kept to a 
minimum to utilize the confidence previously gained with 
SHA-1 and its predecessors MD4[14] and MD5. However, 
the main improvements included in MDP-192[13]  are: The 
increased size of the hash; that is 192 bits compared to 128 
and 160 bits for the MD-5 and SHA-1 schemes. The security 
bits have been increased from 64 and 80 to 96 bits. The 
message block size is increased to 1024 bits providing faster 
execution times. The message words in the different rounds 
are not only permuted but computed by xor and addition 
with the previous message words. This renders it harder for 
local changes to be confined to a few bits. In other words, 
individual message bits influence the computations at a 
large number of places. This, in turn, provides faster 
avalanche effect and added security. Moreover, adding two 
nonlinear functions and one of the variables to compute 
another variable, not only eliminates the possibility of 
certain attacks but also provides faster data diffusion. The 
fifth improvement is based on processing the message 
blocks employing six variables rather than four or five 
variables. This contributes to better security and faster 
avalanche effect. We have introduced a deliberate 
asymmetry in the procedure structure to impede potential 
and some future attacks. The xor and addition operations do 
not cause appreciable execution delays for today’s 
processors. Nevertheless, the number of rotation operations, 
in each branch, has been optimized to provide fast 
avalanche with minimum overall execution delays. To verify 
the security of this hash function, we discuss the following 
simple theorem [13]: 

 
Theorem 5.1:  
Let h be an m-bit to n-bit hash function where m >= n input 
keys k1, k2 to h.  
Then h (k1) = h (k2) with probability equal to: 

2-m + 2-n – 2-m-n    

Proof: 
If k1 = k2 , then h (k1) = h (k2).  
However, if k1≠ k2, then h(k1) = h(k2) with probability 2-n. 
k1 = k2 with probability 2-m and k1≠ k2 with probability 1- 2-
m. 
Then the probability that h (k1) = h(k2) is given by: 

Pr {h (k1) = h (k2)} = 2-m + (1 - 2-m). 2-n 
As an example, assume two 192-bit different keys x1, x2 
then  

Pr {h(x1) = h(x2)} = 2. 2-192 – 2-384 
= 2-191 (1 - 2-193) ≈ 3.186 x 10-58 

This is a negligible probability of collision of two different 
keys. 
 
5.   The Pseudo Random Number Generator 
(PRG) 

 
The combination of the encryption function and the one-way 
hash function is used to generate the sub-keys. The cipher 
designer has to select which one should precede the other. 
Based on the work by Maurer and Massey [15] where they 
have proved that a cascade of two ciphers is as strong as its 
first cipher. Therefore, we have adjudicated to start with the 
encryption function. The one-way hash function is then used 
recursively to generate the sub-keys based on two large 
numbers that are derived from the user key. In this case, the 
encryption function requires some initial agreed-upon vector 
value (IV), [16], [17], [18] to complete the encryption 
process. This IV can be regarded as a long-term key or even 
a group-key that can be changed on a regular basis or when 
a member leaves the group. The combination of the 
encryption function and the one-way function are used as 
the required pseudo random number generator PRG. It is 
worth pointing out that the design of the cipher intentionally 
allows the change of the one-way hash if successfully 
attacked.  

 
6.  The Algorithm 

 
The algorithm can be formally described as shown in the 
next few lines. 

Algorithm:  STONEMETAMORPHIC 

INPUT:  Plain text message P, User Key K, Block Size B 

OUTPUT: Cipher Text C 

Algorithm body: 

Begin 

Begin key schedule 
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1. Read user key;  

2. Encrypt user key by calling encrypt function and using 
the initial agreed-upon values as the random input to this 
function; 

3. Read the values of the large numbers a and b from the 
encrypted key; 

4. Generate a sub-key by calling the hash one-way function 
and using the constants a, b; 

5. Store the generated value of the subkey; 

6. Repeat steps 5 and 6 to generate the required number of 
subkeys; 

End key schedule; 

 

Begin Encryption 

7. Read a block B of the message P into the message cache; 

8. Use the next generated 192-bit key to bit-wise encrypt  the 
plain text bits by calling the encrypt function; 

9. If message cache is not empty,              Goto step 8; 

10. Else if message cache is empty: 

If message not finished 

10.1 Load next block into message cache; 

10.2 Goto 8; 

Else if message is finished then halt; 

End Encryption; 

End Algorithm. 

 

Function ENCRYPT 

Begin 

1. Read next message bit; 

2. Read next key bit from sub-key; 

3. Read selection bits from sub-key; 

4. Read rotation selection bits from sub-key; 

5. Use selection & rotation bits to select and     perform 
operation: XOR, INV, ROR, NOP; 

6. Perform the encryption operation using plaintext bit and 
sub-key bit to get a cipher bit; 

7. Store the resulting cipher bit; 

End; 
 

As seen from the above formal description of the algorithm, 
it simply consists of a series of pseudo random calls of the 
encryption function. However, each call will trigger a 
different bitwise operation. The simplicity of this algorithm 
readily lends itself to parallelism. This parallelism can be 
achieved using today’s superscalar multi-threading 
capabilities or multiple data paths on a specialized hardware 
such as FPGA with their contemporary vast gate count. 
 
 
 

7.    Software Implementation 

The pseudo C-function [19] that represents such a table is 
given by: 
encrypt (plain-text-bit, key-bit, selection-bit0, selection-bit1, 
rot-bit) 
{  

a1= plain-text-bit ^ key-bit; 
e1= a1 & (~selection-bit0) & (~selection-bit1); 
b1= ~ plain-text-bit; 
f1= b1 & (selection-bit0) & (~selection-bit1); 
g1= rot-bit & (~selection-bit0) & (selection-bit1); 
h1= plain-text-bit & (selection-bit0) & (selection-
bit1); 
cipher-bit = e1|f1|g1|h1; 
return (cipher-bit); 

} 
 

8.    Hardware Implementation 

The hardware version of the CLU, previously shown in 
Figure 2, is FPGA-implemented. We have used Altera 
Quartus II 6.1 Web Edition, [20].  The average delay per 
byte was found to be 4.33 cycles per byte. Straightaway, if 
we use four CLUs in-parallel, this delay will be 
approximately equal to one cycle per byte. This proposed 
parallel configuration is shown in Figure 6. 
 

 
Figure 6. The proposed parallel configuration 

 
A representative code of the Verilog file used to FPGA-
implement the CLU is given by: 
module metamorph (p1,k1,s0,s1,p2,c1); 

input p1,k1,s0,s1,p2; 
output c1; 
xor(a1,p1,k1); 
and(e1,a1,~s0,~s1); 
assign b1= ~p1; 
and(f1,b1,s0,~s1); 
and(g1,p2,~s0,s1); 
and(h1,p1,s0,s1); 
or(c1,e1,f1,g1,h1); 

endmodule 
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9.  Comparison with Chameleon Polymorphic 
Cipher 

 
As seen from the given analysis and results, one can 
summarize the various characteristics of this cipher, when 
compared to Chameleon Polymorphic Cipher [Saeb09], as 
follows: 
 

Table 2: A comparison between Stone Metamorphic Cipher 
and Chameleon Polymorphic Cipher 

 

Cipher 
Characteristic 

Chameleon-192 
Polymorphic 

Cipher  

Stone-192 
Metamorphic 

Cipher 
User key size Variable Variable 
Sub-keys 192-bit K, S(K) 192-bit K,       

S(K), S’(K) 
Estimated 
maximum 
delay per byte 

10 cycles/byte 6 cycles/byte 

Estimated 
average delay 
per byte 

9.1 cycles/byte 4.3 cycles/byte 

PRG  
(Sub-key 
Generation) 

One-way 
Function 

One-way  
cascaded with 
the Encryption 
Function 

Structural Sequential: 
Sel-1, ROT, Sel-
0 

Concurrent: 
XOR, ROT, 
INV, NOP 

Number of 
rounds 

Variable (key-
dependent with 
minimum equal 
to 5 rounds) 

Variable (key-
dependent with 
minimum equal 
to 8 rounds) 

Algorithm 
Template 

Yes  
(key changes 
operation 
parameters) 

No  
(key selects 
operations) 

Parallelizable Yes                       
( some 
sequential 
operations) 

Yes    
(operations are 
selected 
concurrently) 

Security Secure Improved 
Security (pseudo 
random 
sequence of 
operations and 
more secure 
PRG) 

 
 
10.   Security Analysis 
 
One claims that differential cryptanalysis, linear 
cryptanalysis, Interpolation attack, partial key guessing 
attacks, and side-channel attacks, barely apply in this 
metamorphic cipher. The pseudo random selection of 

operations provides the metamorphic nature of the cipher. 
This, in turn, hides most statistical traces that can be 
utilized to launch these attacks. Each key has its own unique 
“weaknesses” that will affect the new form of the algorithm 
utilized. Thus, different keys will produce completely 
different forms (meta-forms) of the cipher. Even the cipher 
designer cannot predict in advance what these forms are. It 
can be easily shown that the probability of guessing the 

correct sequence of operations is of the order of  , where 

w is the word size and N is the number of rounds. That is 
for, say, a word size of 8 bits, the probability of guessing this 

word only is  . For a block size of 64 bits, this 

probability is  . Consequently, statistical analysis is not 

adequate to link the plain text to the cipher text. With 
different user keys, we end up with a different “morph” of 
the cipher; therefore, it is totally infeasible to launch attacks 
by varying keys or parts of the key.  The only option left to 
the cryptanalyst is to attack the key itself. To thwart this 
type of attacks, we have used the encryption function as a 
first stage in a cascade of the encryption function and the 
one-way function. Regarding the key collision probability, it 
was shown in section 4 that the key collision probability is 
negligible when a 192-bit hash is applied. Moreover, the 
cryptanalyst has a negligible probability of guessing the 
correct form of the algorithm utilized. As was previously 
discussed, the simple structure of the proposed cipher 
provides a foundation for efficient software and hardware-
based implementation. Depending on the word or the block 
size required, it is relatively easy to parallelize the data path 
either using multi-threading on a superscalar processor or 
by cloning this path on the FPGA material. Undeniably, 
using the same encryption process and sub-keys for each 
block is a disadvantage from a security point of view. Still, 
this is exactly the same issue with block ciphers in general. 
The advantage obtained from such a configuration, similarly 
to block ciphers, is saving memory and communication 
bandwidth on the chip and the channel levels.  The pseudo 
random selection of operations and the key-dependent 
number of rotations provide a barrier against pattern leakage 
and block replay attacks. These attacks are quite frequent in 
multi-media applications. Using ECB mode, when 
encrypting images with conventional ciphers, a great deal of 
the structure of the original image is preserved [3]. This 
contributes to the problem of block replay. However, the 
selective operations allow the cipher to encrypt images with 
no traces of the original image. This is a major advantage of 
the Stone Metamorphic Cipher bit-level operations when 
applied to multimedia files. 
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11.   Summary & Conclusions 
 
We have presented a metamorphic cipher that is altogether 
key-dependent. The four bit-balanced operations are pseudo-
randomly selected.  Known statistical attacks are barely 
applicable to crypt-analyze this type of ciphers. The 
proposed simple structure, based on the crypto logic unit 
CLU, can be easily parallelized using multi-threading 
superscalar processors or FPGA-based hardware 
implementations. This presented CLU can be viewed as a 
nonlinearity-associated filtering of the data and key streams. 
The PRG, constructed from a cascade of the encryption 
function and the one-way hash function, provides the 
required security against known key attacks. On the other 
hand, it easily allows the replacement of the hash function if 
successfully attacked. The cipher is well-adapted for use in 
multi-media applications. We trust that this approach will 
pave the way for key-driven encryption rather than simply 
using the key for sub-key generation. 

Appendix A: The truth table of the CLU 
 

Pi K i S’1 S’0 
→→→→ Pj 

S1 S0 OP Ci 

0 0 0 0 0 XOR 0 

0 0 0 0 1 INV  1 

0 0 0 1 0 ROR 0 

0 0 0 1 1 NOP 0 

0 0 1 0 0 XOR 0 

0 0 1 0 1 INV  1 

0 0 1 1 0 ROR 1 

0 0 1 1 1 NOP 0 

0 1 0 0 0 XOR 1 

0 1 0 0 1 INV  1 

0 1 0 1 0 ROR 0 

0 1 0 1 1 NOP 0 

0 1 1 0 0 XOR 1 

0 1 1 0 1 INV  1 

0 1 1 1 0 ROR 1 

0 1 1 1 1 NOP 0 

1 0 0 0 0 XOR 1 

1 0 0 0 1 INV  0 

1 0 0 1 0 ROR 0 

1 0 0 1 1 NOP 1 

1 0 1 0 0 XOR 1 

1 0 1 0 1 INV  0 

1 0 1 1 0 ROR 1 

1 0 1 1 1 NOP 1 

1 1 0 0 0 XOR 0 

1 1 0 0 1 INV  0 

1 1 0 1 0 ROR 0 

1 1 0 1 1 NOP 1 

1 1 1 0 0 XOR 0 

1 1 1 0 1 INV  0 

1 1 1 1 0 ROR 1 

1 1 1 1 1 NOP 1 
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